Free Access
RAIRO-Oper. Res.
Volume 27, Number 2, 1993
Page(s) 189 - 199
Published online 06 February 2017
  • 1. M. R. CASALS, M. A. GIL and P. GIL, On the use of Zadeh's probabilistic definition for testing statistical hypotheses from fuzzy information. Fuzzy Sets and Systems, 1986, 20, (2), pp. 175-190. [MR: 858440] [Zbl: 0611.62018] [Google Scholar]
  • 2. M. R. CASALS, M. A. GIL and P. GIL, The fuzzy decision problem: An approach to the problem of testing statistical hypotheses with fuzzy information, European Journal of Operational Research, 1986, 27, pp. 371-382. [MR: 864907] [Zbl: 0605.62018] [Google Scholar]
  • 3. M. R. CASALS, M. A. GIL and P. GIL, El problema de decisión difuso y el contraste de hipótesis paramétricas difusas, Actas XV Reunion Nacional de Estadistica e Investigacion Operativa Asturias, 1985, Tomo I, pp. 86-93. [Google Scholar]
  • 4. M. DELGADO, J. L. VERDEGAY and M. A. VILA, Testing fuzzy-Hypotheses. A Bayesian Approach. In: M. M. Gupta, A. Kandel, W. Bandier and J. B. Kriszka, Eds., Aproximate Reasoning in Expert Systems. North-Holland Publishing Co., 1985, pp. 307-316. [MR: 845354] [Google Scholar]
  • 5. T. S. FERGUSON, Mathematical Statistics. A Decision Theoretic Approach, Academic Press, 1967. [MR: 215390] [Zbl: 0153.47602] [Google Scholar]
  • 6. M. A. GIL, N. CORRAL and P. GIL, The fuzzy decision problem: An approach to the point estimation problem with fuzzy information, European Journal of Operational Research, 1985, 22, (1), pp. 26-34. [MR: 806460] [Zbl: 0576.90003] [Google Scholar]
  • 7. R KRUSE and K. D. MEYER, Statistics with vague data, D. Reidel Publishing Co., 1987. [MR: 913303] [Zbl: 0663.62010] [Google Scholar]
  • 8. E. L. LEHMANN, Testing Statistical Hypotheses, Wiley, 1959. [MR: 107933] [Zbl: 0608.62020] [Google Scholar]
  • 9. C. V. NEGOITA and D. A. RALESCU, Applications of Fuzzy Sets to Systems Analysis, Birkhauser, Basel, 1975. [MR: 490083] [Zbl: 0326.94002] [Google Scholar]
  • 10. T. OKUDA, H. TANAKA and K. ASAI, A formulation of fuzzy decision problems with fuzzy information using probability measures of fuzzy events, Information and Control, 1978, 38, pp. 135-147. [MR: 490454] [Zbl: 0401.94050] [Google Scholar]
  • 11. V. K. ROHAGTI, An Introduction to Probability Theory and Mathematical Statistics, Wiley, 1976. [Zbl: 0354.62001] [Google Scholar]
  • 12. H. TANAKA, T. OKUDA and K. ASAI, Fuzzy information and decision in statistical model, In: M. M. Gupta, R. K. Ragade, and R. R. Yager, Eds.,Advances in Fuzzy Sets Theory and Applications, North-Holland Publishing Co, 1979, pp. 303-320. [MR: 558730] [Google Scholar]
  • 13. H. TANAKA and G. SOMMER. On posterior probabilities concerning a fuzzy information, Die Betriebswirtschaft, Stuttgart, 1977, 1, p. 166. [Google Scholar]
  • 14. A. WALD, Statistical Decision Functions, Wiley, 1950. [MR: 36976] [Zbl: 0040.36402] [Google Scholar]
  • 15. L. A. ZADEH, Fuzzy sets, Information and Control, 1965, 8, pp. 338-353. [MR: 219427] [Zbl: 0139.24606] [Google Scholar]
  • 16. L. A. ZADEH, Probability measures of fuzzy events, Journal of Mathematical Analysis and Applications, 1968, 23, pp. 421-427. [MR: 230569] [Zbl: 0174.49002] [Google Scholar]
  • 17. L. A. ZADEH, Fuzzy Sets as a basis for a theory of possibility, Fuzzy Sets and Systems, 1978, 1, (1), pp. 3-28. [MR: 480045] [Zbl: 0377.04002] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.