Free Access
RAIRO-Oper. Res.
Volume 28, Number 1, 1994
Page(s) 1 - 21
Published online 06 February 2017
  • A. R. ABDULLAH, A Robust Method for Linear and Nonlinear Optimization Based on Genetic Algorithm Cybernetica, 1991, 34, No. 4, pp. 279-287. [Zbl: 0741.90062] [Google Scholar]
  • F. A. Al KHAYYAL, Minimizing A Quasiconcave Function Over a Convex Set: A Case Solvable by Lagrangian Duality, Proceedings, I.E.E.E. International Conference on Systems, Man, and Cybernetics, Tucson, 1985, AZ, pp. 661-663. [Google Scholar]
  • G. ANANDALINGAM, A Mathematical Programming Model of Decentralized Multi-Level Systems, J. of the Operational Research Society, 1988, 39, No. 11 [Zbl: 0657.90061] [Google Scholar]
  • G. ANANDALINGAM and D. J. WHITE, A Penalty Function Approach to Bi-Level Linear Programming, working paper, Department of Systems, University of Pennsylvania, August, 1988. [Google Scholar]
  • G. ANANDALINGAM and T. L. FRIESZ, Hierarchical Optimization: An Introduction, Annals of Operations Research, 1992, 34, pp. 1-11. [MR: 1150995] [Zbl: 0751.90067] [Google Scholar]
  • J. F. BARD, An Efficient Point Algorithm for a Linear Two-Stage Optimization Problem, Operations Research, 1983, July-August, pp. 670-684. [MR: 720514] [Zbl: 0525.90086] [Google Scholar]
  • J. F. BARD and J. E. FALK, An Explicit Solution to the Multi-Level Programming Problem, Computers and Operations Research, 1982, 9, No. 1, pp. 77-100. [MR: 768598] [Google Scholar]
  • H. P. BENSON, On the Convergence of Two Branch and Bound Algorithms for Nonconvex Programming, J. of Optimization Theory and Application, 1982, 36, pp. 129-134. [MR: 663339] [Zbl: 0453.65046] [Google Scholar]
  • A. D. BETHKE, Genetic Algorithms as Function Optimizers, Ph. D. dissertation, unpublished, University of Michigan, Ann Arbor, 1981. [Google Scholar]
  • W. F. BIALAS and M. H. HARWAN, On Two-Level Optimization, I.E.E.E. Transactions on Automatic Control, 1982, AC-27, pp. 211-214. [Zbl: 0487.90005] [Google Scholar]
  • W. F. BIALAS and M. H. KARWAN, Two-Level Linear Programming, Management Science, 1984, 30, No. 8, August, pp. 1004-1020. [MR: 763843] [Zbl: 0559.90053] [Google Scholar]
  • W. CANDLER and R. TOWNSLEY, A Linear Two-Level Programming Problem, Computers and Operations Research, 1982, 9, No. 1, pp. 59-76. [MR: 768597] [Google Scholar]
  • L. DAVIS (Ed.), Genetic Algorithms and Simulated Annealing, Morgan Kaufman Publishers, Los Altos, CA, 1987 a. [Zbl: 0684.68013] [Google Scholar]
  • L. DAVIS, Performance of a Genetic Algorithm on the Network Link Size Problem, paper presented at the O.R.S.A./T.I.M.S. meeting, St. Louis, October, 1987 b. [Google Scholar]
  • K. De JONG, Adaptive System Design: A Genetic Approach, I.E.E.E., Transactions on Systems, Man, and Cybernetics, 1986, 16, Jan.-Feb. [Google Scholar]
  • J. E. FALK, A Linear Mini-Max Problem, Mathematical Programming, 1973, pp. 169-188. [MR: 332174] [Zbl: 0276.90053] [Google Scholar]
  • C. S. FISK, A Conceptual Framework for Optimal Transportation Systems Planning with Integrated Supply and Demand Models, Transportation Science, 1986, 20, No. 1, pp. 37-47. [Google Scholar]
  • J. FORTUNY-AMAT and B. MCCARL, A Representative and Economic Interpretation of a Two Level Programming Problem, J. of the Operational Research Society, 1981, 32, pp. 783-792. [MR: 626944] [Zbl: 0459.90067] [Google Scholar]
  • T. L. FRIESZ and P. T. HARKER, Multicriteria Spatial Price Equilibrium Network Design: Theory and Computational Results, Transportation Research, 1983, 17b, pp. 203-217. [Zbl: 0568.90002] [Google Scholar]
  • G. GALLO and A. ULKUCU, Bi-Linear Programming: An Exact Algorithm, Mathematical Programming, 1977, 12, pp. 173-194. [MR: 449682] [Zbl: 0363.90086] [Google Scholar]
  • F. GLOVER, Convexity Cuts and Cut Search, Operations Research 1973, 21, pp. 123-134 [MR: 354004] [Zbl: 0263.90020] [Google Scholar]
  • F. GLOVER, Future Paths for Integer Programming and Links to Artificial Intelligence, Computers & Operations Research, 1986, 13, (5). pp.533-549. [MR: 868908] [Zbl: 0615.90083] [Google Scholar]
  • F. GLOVER, Tabu Search, mimeo, Center for Applied Artificial Intelligence, Graduate School of Business, Universiry of Colarado, October, 1987. [Google Scholar]
  • D. E. GOLDBERG and J. RICHARSDON, Genetic Algorithms with Sharing Multi-Modal Function Optimization, in Genetic Algorithms and Their Application: Proceedings of the Second International Conference on Genetic Algorithms, M.I.T., Cambridge, MA, 1987. [Google Scholar]
  • J. GREFENSTETTE, Optimization of Control Parameters for Genetic Algorithms, I.E.E.E. Transactions on Systems, Man, and Cybernetics, 1986, 16, (1), January-February, pp. 122-128. [Zbl: 1020.65032] [Google Scholar]
  • M. GROTSCHEL and M. W. PADBERG, On the Symmetric Travelling Salesman Problem I: Inequalities, II: Lifting Theorems and Facets, Mathematical Programming, 1979. 16, pp. 265-302. [MR: 533907] [Zbl: 0413.90049] [Google Scholar]
  • Y. C. HO, P. B. LUTH and R. MURALIDHARAN, Information Structures, Stackelberg Games, and Incentive Controllability, I.E.E.E. Transactions on Automatic Control, 1981, AC-31, No. 4, pp. 670-684. [Zbl: 0476.90089] [Google Scholar]
  • J. H. HOLLAND, Adaption in Natural and Artificial Systems, The University of Michigan, 1975, Ann Arbor, MI, 1975. [MR: 441393] [Zbl: 0317.68006] [Google Scholar]
  • S. KIRKPATRICK, Combinatorial Search Using Simulated Annealing, paper presented at the O.R.S.A./T.I.M.S. meeting, St. Louis, October, 1987. [Google Scholar]
  • H. KONNO, A Cutting Plane Algorithm for Solving Bilinear Programs, Mathematical Programming, 1976, 11, pp. 14-27. [MR: 441328] [Zbl: 0353.90069] [Google Scholar]
  • V. KUMAR and L. N. KANAL, Some New Insights into the Relationships Among Dynamic Programming, Branch and Bound, and Heuristic Search Procedures, Proceedings, I.E.E.E. International Conference on Systems, Man, and Cybernetics, 1983, pp. 19-23. [Google Scholar]
  • J.-J. LAFFONT and E. MASKIN, The Theory of Incentives: An Overview, in W. HILDENBRAND Ed., Advances in Economic Theory, Cambridge University Press, Cambride, U.K., 1982, pp. 31-94. [Zbl: 0556.90004] [Google Scholar]
  • L. J. LEBLANC and D. E. BOYCE, A Bi-Level Programming Algorithm for Exact Solution of the Network Design Problem with User-Optimal Flows, Transportation Research B, 1986, 28, pp. 259-265. [MR: 846185] [Google Scholar]
  • T. H. MATHEISS and D. S. RUBIN, A Survey and Comparison of Methods for Finding All Vertices of Convex Polyhedral Sets, Mathematics of Operations Research, 1980, 5, pp. 167-185. [MR: 571811] [Zbl: 0442.90050] [Google Scholar]
  • P. M. PARDALOS and J. B. ROSEN, Methods for Global Concave Minimization: A Bibliographic Survey, S.I.A.M. Review, 1986, 28, (3), pp. 367-379. [MR: 856222] [Zbl: 0602.90105] [Google Scholar]
  • A. H. G. RINNOOY and G. T. TIMMER, Stochastic Global Optimization Methods, part I: Clustering Methods and part II: Multi-level, Methods Mathematical Programming, 1987, 39, No. 1, pp. 27-78. [MR: 909007] [Zbl: 0634.90066] [Google Scholar]
  • J. D. SCHAFFER, Learning Multiclass Pattern Determination, in Proceedings of the International Conference on Genetic Algorithms and Their Applications, Robotics Institute of Carnegie-Mellon University, Pittsburg, PA, 1985. [Zbl: 0678.68090] [Google Scholar]
  • H. von STACKELBERG, The Theory of the Market Economy, Oxford Univesity Press, Oxford, 1952. [Google Scholar]
  • U. P. WEN and S. T. HSU, Linear Bi-level Programming: A Review, J. of the Operational Research Society, 1991, 42, No. 2, pp. 125-133. [Zbl: 0722.90046] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.