Free Access
RAIRO-Oper. Res.
Volume 29, Number 2, 1995
Page(s) 195 - 217
Published online 06 February 2017
  • 1. I. ADLER, M. G. C. RESENDE, G. VEIGA, An implementation of Karmarkar's algorithm for linear programming, Math. Programming, 1989, 44, pp. 297-335. [MR: 1028226] [Zbl: 0682.90061] [Google Scholar]
  • 2. I. ADLER, R. D. C. MONTEIRO, Limiting behavior of the affine scaling continuous trajectories for linear programming problems, Math. Programming, 1991, 50, pp. 29-51. [MR: 1098845] [Zbl: 0719.90044] [Google Scholar]
  • 3. E. R. BARNES, A variation on Karmarkar's algorithm for solving linear programming, Math Programming, 1986, 36, pp. 174-182. [MR: 866987] [Zbl: 0626.90052] [Google Scholar]
  • 4. F. DELEBECQUE, C. KLIMANN, S. STEER, Basile. Un système de CAO pour l'automatique, Version 3.0. Guide d'utilisation, INRIA, Mars 1989. [Google Scholar]
  • 5. D. A. BAYER, J. C. LAGARIAS, The nonlinear geometry of linear programming: I Affine and projective trajectories, Trans, Amer. Math. Soc., 1989, (2), 314, pp. 499-526. [MR: 1005525] [Zbl: 0671.90045] [Google Scholar]
  • 6. M. BOUTHOU, Méthodes de points intérieurs pour l'optimisation des systèmes de grande taille, Thèse de Doctorat, Université Paris Dauphine, 1993. [Google Scholar]
  • 7. J.-P. BULTEAU, J.-P. VIAL, A restricted trust region algorithms for unconstrained optimization, Optim. Theory and Appl., 1985, 47, n° 4, pp. 413-435. [MR: 818870] [Zbl: 0556.90075] [Google Scholar]
  • 8. E. CASAS, C. POLA, Dealing with degenerated cases in quadratic programs, RAIRO-Operations Research, 1994, 27, n° 4, pp. 401 à 426. [EuDML: 105069] [MR: 1250365] [Zbl: 0795.90048] [Google Scholar]
  • 9. I. I. DIKIN, Iterative solutions of problems of linear and quadratic programming, Soviet. Math. Doklady, 1967, 8, pp. 674-675. [Zbl: 0189.19504] [Google Scholar]
  • 10. C. C. GONZAGA, L. A. CARLOS, A primal affine scaling algorithm for linearly constrained convex programs, Report, Federal University of Rio de Janeiro. [Google Scholar]
  • 11. C. C. GONZAGA, Convergence of the large step primal affine scaling algorithm for primal non-degenerate linear programs, Tech. Report, Federal University of Rio de Janeiro, Brazil. [Google Scholar]
  • 12. M. D. HEBDEN, An algorithm for minimization using exact second derivatives. Atomic Energy Research, Establishment report TP 515, Harwell, England 1973. [Google Scholar]
  • 13. N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica, 1984, 4, pp. 373-395. [MR: 779900] [Zbl: 0557.90065] [Google Scholar]
  • 14. M. KOJIMA, S. MIZUNO, A. YOSHISE, AN O (√nL) iteration potential reduction algorithm for linear complementarity problems, Math. Programming, 1991, 50, pp. 331-342. [MR: 1114235] [Zbl: 0738.90077] [Google Scholar]
  • 15. O. L. MANGASARIAN, A simple characterization of solution sets of convex programs, Oper. Res. Lett., 1988, 7, pp. 21-26. [MR: 936347] [Zbl: 0653.90055] [Google Scholar]
  • 16. N. MEGIDDO, M. SHUB, Boundary behavior of interior point algorithms for linear programming, Math. Oper, Res., 1989, 14, pp. 97-146. [MR: 984561] [Zbl: 0675.90050] [Google Scholar]
  • 17. R. D. C. MONTEIRO, I. ADLER, M. G. C. RESENDE, A polynomial time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extensions, Math. Oper. Res., 1990, 15 (2). [MR: 1051568] [Zbl: 0714.90060] [Google Scholar]
  • 18. J. J. MORÉ, Recent developments in algorithms and software for trust region method, Born 1982, Springer Verlag. [MR: 717404] [Zbl: 0546.90077] [Google Scholar]
  • 19. R. SAIGAL, A three step quadratically convergent implementation of the primal affine scalling method, Technical Report 93-9, Department of Industrial and Operational Engineering, University of Michigan, Ann-Arbor, MI-48109-2117, USA. [Google Scholar]
  • 20. J. SUN, A convergence proof of an affine-scaling algorithm for convex quadratic programming without nondegeneracy assumptions, Technical Report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208, USA, 1990. [Zbl: 0781.90073] [Google Scholar]
  • 21. P. TSENG, Z. Q. LUO, On the convergence of the affine scaling algorithm, Technical Report, CICS-P-169, Center for Intelligent Control Systems, Massachusetts Institute of Technology (Cambridge, MA, 1989). [Zbl: 0762.90052] [Google Scholar]
  • 22. T. TSUCHIYA, Global convergence of the affine scaling methods for degenerate linear programming problem, Math. Programming, 1991, 52, pp. 377-404. [MR: 1148177] [Zbl: 0749.90051] [Google Scholar]
  • 23. T. TSUCHIYA, Global convergence of the affine scaling algorithm for the primal degenerate strictly convex quadratic programming problems, The Institute of Statistical Mathematics, Tokyo, Japan, Technical report n° 417. [Zbl: 0793.90055] [Google Scholar]
  • 24. T. TSUCHIYA, M. MURATMATSU, Global convergence of a long-step affine scaling algorithm for degenerate linear programming problems, Research Memorandum 423, the Institute of Statistical Mathematics, 4-6-7 Minami-Azabou, Minoto-Ku, Tokyo 106, Japan, 1992. [Zbl: 0838.90081] [Google Scholar]
  • 25. T. TSUCHIYA, R. D. C. MONTEIRO, Superlinear convergence of the affine scaling algorithm, Department of Systems and Industrial Engineering, University of Arizona, Tucson, Technical Report. [Zbl: 0870.90083] [Google Scholar]
  • 26. R. J. VANDERBEI, S. M. MEKETON, B. A. FREEDMAN, A modification of Karmarkar's linear programming algorithm, Algorithmica, 1986, 1, pp. 395-407. [MR: 880730] [Zbl: 0626.90056] [Google Scholar]
  • 27. Y. YE, E. TSE, An extension of Karmarkar's projective algorithm for convex quadratic programming, Math. Programming, 1989, 44, pp. 157-179. [MR: 1003558] [Zbl: 0674.90077] [Google Scholar]
  • 28. Y. YE, On affine scaling algorithms for nonconvex quadratic programming, Math. Prog., 1992, 56, 3, pp. 285-301. [MR: 1187254] [Zbl: 0767.90065] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.