Free Access
Issue
RAIRO-Oper. Res.
Volume 29, Number 2, 1995
Page(s) 195 - 217
DOI https://doi.org/10.1051/ro/1995290201951
Published online 06 February 2017
  • 1. I. ADLER, M. G. C. RESENDE, G. VEIGA, An implementation of Karmarkar's algorithm for linear programming, Math. Programming, 1989, 44, pp. 297-335. [MR: 1028226] [Zbl: 0682.90061]
  • 2. I. ADLER, R. D. C. MONTEIRO, Limiting behavior of the affine scaling continuous trajectories for linear programming problems, Math. Programming, 1991, 50, pp. 29-51. [MR: 1098845] [Zbl: 0719.90044]
  • 3. E. R. BARNES, A variation on Karmarkar's algorithm for solving linear programming, Math Programming, 1986, 36, pp. 174-182. [MR: 866987] [Zbl: 0626.90052]
  • 4. F. DELEBECQUE, C. KLIMANN, S. STEER, Basile. Un système de CAO pour l'automatique, Version 3.0. Guide d'utilisation, INRIA, Mars 1989.
  • 5. D. A. BAYER, J. C. LAGARIAS, The nonlinear geometry of linear programming: I Affine and projective trajectories, Trans, Amer. Math. Soc., 1989, (2), 314, pp. 499-526. [MR: 1005525] [Zbl: 0671.90045]
  • 6. M. BOUTHOU, Méthodes de points intérieurs pour l'optimisation des systèmes de grande taille, Thèse de Doctorat, Université Paris Dauphine, 1993.
  • 7. J.-P. BULTEAU, J.-P. VIAL, A restricted trust region algorithms for unconstrained optimization, Optim. Theory and Appl., 1985, 47, n° 4, pp. 413-435. [MR: 818870] [Zbl: 0556.90075]
  • 8. E. CASAS, C. POLA, Dealing with degenerated cases in quadratic programs, RAIRO-Operations Research, 1994, 27, n° 4, pp. 401 à 426. [EuDML: 105069] [MR: 1250365] [Zbl: 0795.90048]
  • 9. I. I. DIKIN, Iterative solutions of problems of linear and quadratic programming, Soviet. Math. Doklady, 1967, 8, pp. 674-675. [Zbl: 0189.19504]
  • 10. C. C. GONZAGA, L. A. CARLOS, A primal affine scaling algorithm for linearly constrained convex programs, Report, Federal University of Rio de Janeiro.
  • 11. C. C. GONZAGA, Convergence of the large step primal affine scaling algorithm for primal non-degenerate linear programs, Tech. Report, Federal University of Rio de Janeiro, Brazil.
  • 12. M. D. HEBDEN, An algorithm for minimization using exact second derivatives. Atomic Energy Research, Establishment report TP 515, Harwell, England 1973.
  • 13. N. KARMARKAR, A new polynomial time algorithm for linear programming, Combinatorica, 1984, 4, pp. 373-395. [MR: 779900] [Zbl: 0557.90065]
  • 14. M. KOJIMA, S. MIZUNO, A. YOSHISE, AN O (√nL) iteration potential reduction algorithm for linear complementarity problems, Math. Programming, 1991, 50, pp. 331-342. [MR: 1114235] [Zbl: 0738.90077]
  • 15. O. L. MANGASARIAN, A simple characterization of solution sets of convex programs, Oper. Res. Lett., 1988, 7, pp. 21-26. [MR: 936347] [Zbl: 0653.90055]
  • 16. N. MEGIDDO, M. SHUB, Boundary behavior of interior point algorithms for linear programming, Math. Oper, Res., 1989, 14, pp. 97-146. [MR: 984561] [Zbl: 0675.90050]
  • 17. R. D. C. MONTEIRO, I. ADLER, M. G. C. RESENDE, A polynomial time primal-dual affine scaling algorithm for linear and convex quadratic programming and its power series extensions, Math. Oper. Res., 1990, 15 (2). [MR: 1051568] [Zbl: 0714.90060]
  • 18. J. J. MORÉ, Recent developments in algorithms and software for trust region method, Born 1982, Springer Verlag. [MR: 717404] [Zbl: 0546.90077]
  • 19. R. SAIGAL, A three step quadratically convergent implementation of the primal affine scalling method, Technical Report 93-9, Department of Industrial and Operational Engineering, University of Michigan, Ann-Arbor, MI-48109-2117, USA.
  • 20. J. SUN, A convergence proof of an affine-scaling algorithm for convex quadratic programming without nondegeneracy assumptions, Technical Report, Department of Industrial Engineering and Management Sciences, Northwestern University, Evanston, IL 60208, USA, 1990. [Zbl: 0781.90073]
  • 21. P. TSENG, Z. Q. LUO, On the convergence of the affine scaling algorithm, Technical Report, CICS-P-169, Center for Intelligent Control Systems, Massachusetts Institute of Technology (Cambridge, MA, 1989). [Zbl: 0762.90052]
  • 22. T. TSUCHIYA, Global convergence of the affine scaling methods for degenerate linear programming problem, Math. Programming, 1991, 52, pp. 377-404. [MR: 1148177] [Zbl: 0749.90051]
  • 23. T. TSUCHIYA, Global convergence of the affine scaling algorithm for the primal degenerate strictly convex quadratic programming problems, The Institute of Statistical Mathematics, Tokyo, Japan, Technical report n° 417. [Zbl: 0793.90055]
  • 24. T. TSUCHIYA, M. MURATMATSU, Global convergence of a long-step affine scaling algorithm for degenerate linear programming problems, Research Memorandum 423, the Institute of Statistical Mathematics, 4-6-7 Minami-Azabou, Minoto-Ku, Tokyo 106, Japan, 1992. [Zbl: 0838.90081]
  • 25. T. TSUCHIYA, R. D. C. MONTEIRO, Superlinear convergence of the affine scaling algorithm, Department of Systems and Industrial Engineering, University of Arizona, Tucson, Technical Report. [Zbl: 0870.90083]
  • 26. R. J. VANDERBEI, S. M. MEKETON, B. A. FREEDMAN, A modification of Karmarkar's linear programming algorithm, Algorithmica, 1986, 1, pp. 395-407. [MR: 880730] [Zbl: 0626.90056]
  • 27. Y. YE, E. TSE, An extension of Karmarkar's projective algorithm for convex quadratic programming, Math. Programming, 1989, 44, pp. 157-179. [MR: 1003558] [Zbl: 0674.90077]
  • 28. Y. YE, On affine scaling algorithms for nonconvex quadratic programming, Math. Prog., 1992, 56, 3, pp. 285-301. [MR: 1187254] [Zbl: 0767.90065]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.