Free Access
RAIRO-Oper. Res.
Volume 30, Number 1, 1996
Page(s) 31 - 49
Published online 10 February 2017
  • 1. LE T. H. AN, Analyse numérique des algorithmes de l'Optimisation d.c. Approches locales et globales. Codes et simulations numériques en grande dimension. Applications. Thèse de Doctorat de l'Université de Rouen, France, 1994. [Google Scholar]
  • 2. LE T. H. AN, PHAM D. TAO and L. D. Muu, Numerical solution for Optimization over the Efficient set by d.c. optimization algorithm, To appear in Opérations Research Letters. [Zbl: 0871.90074] [Google Scholar]
  • 3. J. E. FALK and R. M. SOLAND, An algorithm for separable non convex programming problems, Management Science, 1969, 75, pp. 550-569. [MR: 389214] [Zbl: 0172.43802] [Google Scholar]
  • 4. R. FLETCHER, Practical methods of Optimization (second edition), John Wiley & Sons, New York, 1991. [MR: 955799] [Zbl: 0905.65002] [Google Scholar]
  • 5. C. A. FLOUDAS, P. M. PARDALOS, A collection of test problems for constrained global optimization algorithms, In G. Goos and J. HARTMANIS, editors, Lecture notes in Computer Science, 445, Springer-Verlag, 1987. [Zbl: 0718.90054] [Google Scholar]
  • 6. P. E. GILL, W. MURRAY and M. H. WRIGHT, Practical optimization, Academic Press, 1981. [MR: 634376] [Zbl: 0503.90062] [Google Scholar]
  • 7. R. HORST, T. Q. PHONG, N. V. THOAI and J. de VRIES, On solving a d.c. programming problem by a sequence of linear programs, 7. of Global Optimization, 1991, I, pp. 183-203. [MR: 1263590] [Zbl: 0755.90076] [Google Scholar]
  • 8. R. HORST and H. TUY, Global Optimization: Deterministic Approaches, Springer-Verlag, Berlin, New York, 2e edition, 1993. [MR: 1274246] [Zbl: 0704.90057] [Google Scholar]
  • 9. B. KALANTARI and J. B. ROSEN, Algorithm for global minimization of linearly constrained concave quadratic functions, Mathematics of Opérations Research, 1987 72, pp. 544-561. [MR: 906423] [Zbl: 0638.90081] [Google Scholar]
  • 10. J. J. MORE and D. C. SORENSEN, Computing a trust region step, SIAM J. Sel Statist. Comput., 1981. 4, pp.553-572. [MR: 723110] [Zbl: 0551.65042] [Google Scholar]
  • 11. L. D. Muu, T. Q. PHONG and PHAM DINH TAO, Decomposition methods for solving a class of nonconvex programming problems dealing with bilinear and quadratic functions, Computational Optimization and Application, 1995, 4, pp. 203-216. [MR: 1329604] [Zbl: 0834.90101] [Google Scholar]
  • 12. P. M. PARDALOS, J. H. GLICK and J. B. ROSEN, Global optimization of indefinite quadratic problems, Computing, 1987, 39, pp. 281-291. [MR: 923455] [Zbl: 0627.65072] [Google Scholar]
  • 13. A.T. PHILLIPS and J. B. ROSEN, A parallel algorithm forconstrained concave quadratic global minimization, Mathematical Programming, 1988, 42, pp.412-448. [MR: 976130] [Zbl: 0665.90071] [Google Scholar]
  • 14. A.T. PHILLIPS and J. B. ROSEN, A parallel algorithm forpartially separable non-convex global minimization: linear constraints, Annals of Operations Research, 1990, 25, pp. 101-118. [MR: 1084425] [Zbl: 0723.90063] [Google Scholar]
  • 15. T. Q. PHONG, Analyse numérique des algorithmes d'Optimisation globale. Codes et simulations numériques. Applications. Thèse de Doctorat de l'Université de Rouen, France, 1994. [Google Scholar]
  • 16. J. B. ROSEN, Minimization of linearly constrained concave function by partition of feasible domain, Math. Operations Research, 1983, 8, pp. 215-230. [MR: 707054] [Zbl: 0526.90072] [Google Scholar]
  • 17. J. B. ROSEN and P. M. PARDALOS, Global minimization of large scale constrained quadratic problems by separable programming, Mathematical Programming, 1986, 34(2), PP. 163-174. [MR: 838476] [Zbl: 0597.90066] [Google Scholar]
  • 18. PHAM D. TAO, Contribution à la théorie de normes et ses applications à l'analyse numérique. Thèse de doctorat d'état es sciences, USMG, Grenoble, France, 1981. [Google Scholar]
  • 19. PHAM D. TAO, Convergence of subgradient method for Computing the bound norm of matrices, Linear Alg. and its Appl., 1984, 62, pp. 163-182. [MR: 761065] [Zbl: 0563.65029] [Google Scholar]
  • 20. PHAM D. TAO, Algorithmes de calcul du maximum d'une forme quadratique sur la boule unité de la norme du maximum, Numerische Mathematik, 1985, 45, pp. 377-440. [MR: 769247] [Zbl: 0531.65022] [Google Scholar]
  • 21. PHAM D. TAO, Algorithms for solving a class of nonconvex optimization problems. subgradient methods , Fermat days 85. Mathematics for Optimization, Elsevier Science Publishers B. V. North-Holland, 1986. [Zbl: 0638.90087] [Google Scholar]
  • 22. PHAM D. TAO, Some new results in nonconvex nondifferentiable optimization. 6th French-German Conference on Optimization, Lambrech, Germany, 2/6-8/6 1991. [Google Scholar]
  • 23. PHAM D. TAO and EL BERNOUSSI, Duality in d.c. (difference of convex functions) optimization. subgradient methods, Trends in Mathematical Optimization, volume 84 of International Series of Numerische Mathematik, Birkhauser, 1988. [MR: 1017958] [Zbl: 0634.49009] [Google Scholar]
  • 24. PHAM D. TAO and LE T. H. AN, D. C. (difference of convex functions) optimization algorithms (DCA) for globally minimizing nonconvex quadratic forms on euclidean balls and sphères, To appear in Opérations Research Letters. [Zbl: 0876.90071] [Google Scholar]
  • 25. H. TUY, Global minimization of a difference of two convex functions, Mathematical Programming Study, 1987, 30, pp. 150-182. [MR: 874136] [Zbl: 0619.90061] [Google Scholar]
  • 26. H. TUY, The complementary convex structure in global optimization, J. of Global Optimization, 1992, 2, pp.21-40. [MR: 1266894] [Zbl: 0787.90091] [Google Scholar]
  • 27. S. A. VAVASIS, Approximation algorithms for indefinite quadratic programming, Mathematical Programming, 1992, 57, pp. 279-311. [MR: 1195028] [Zbl: 0845.90095] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.