Free Access
Issue
RAIRO-Oper. Res.
Volume 30, Number 1, 1996
Page(s) 65 - 79
DOI https://doi.org/10.1051/ro/1996300100651
Published online 10 February 2017
  • 1. H. BRÄSEL, Lateinische Rechtecke und Maschinenbelegung, Habilitationsschrift, TU Magdeburg, 1990.
  • 2. H. BRÄSEL and M. KLEINAU, On number problems for the open shop problem. System Modelling and Optimization, Proceedings of the 15th 1FIP Conference, Zurich, Switzerland, Springer-Verlag, 1992, pp. 145-155. [MR: 1182331] [Zbl: 0788.90037]
  • 3. H. BRÄSEL, D. KLUGE and F. WERNER, A polynomial algorithm for the [ n/m/O, tij, tree/Cmax] open shop problem, European J. Oper. Res., 1994, 72, pp. 125-134. [Zbl: 0798.90081]
  • 4. H. BRÄSEL, D. KLUGE and F. WERNER, A polynomial algorithm for an open shop problem with unit processing times and tree constraints, to appear 1994 in Discrete Applied Mathematics. [MR: 1326714] [Zbl: 0833.90066]
  • 5. P. BRUCKER, B. JURISCH and M. JURISCH, Open shop problems with Unit time operations, ZOR, 1993, 37, pp. 59-73. [MR: 1213678] [Zbl: 0776.90033]
  • 6. P. BRUCKER, B. JURISCH, T. TAUTENHAHN and F. WERNER, Scheduling unit time open shops to minimize the weighted number of late jobs, OR Letters, 1994, 14, pp. 245-250. [MR: 1264095] [Zbl: 0793.90028]
  • 7. R. E. GRAHAM, E. L. LAWLWER and J. K. LENSTRA, Rinnooy Kan, A. H. G.: Optimization and approximation in deterministic sequencing and scheduling - a survey, Ann. Discrete Mathematics, 1979, 5, pp. 287-326. [MR: 558574] [Zbl: 0411.90044]
  • 8. T. GONZALES and S. SAHNI, Open shop scheduling to minimize finish time, J. Assoc. Comput. Mach., 1976, 23, pp. 665-679. [MR: 429089] [Zbl: 0343.68031]
  • 9. W. KUBIAK, C. SRISKANDARAJAH and K. ZARAS, A note on the complexity of open-shop scheduling problems, INFOR, 1991, 29, pp. 284-294. [Zbl: 0778.90027]
  • 10. C. Y. Liu and R. L. BULFIN, Scheduling open shops with unit execution times to minimize functions of due dates, Operations Research, 1988, 36, No. 4, pp. 553-559. [MR: 960255] [Zbl: 0652.90063]
  • 11. R. MCNAUGHTON, Scheduling with deadlines and loss functions, Management Science, 1959, 6, pp. 1-12. [MR: 110585] [Zbl: 1047.90504]
  • 12. V. S. TANAEV, SOTSKOV, N. YU and V. A. STRUSEVICH, Scheduling theory. Multistage system, Kluwer Academie Publishers, 1994. [Zbl: 0925.90224]
  • 13. T. TAUTENHAHN Open-shop-Probleme mit Einheitsbearbeitungszeiten, Dissertation, Otto-von-Guericke-Universitàt, Magdeburg, 1993.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.