Free Access
Issue
RAIRO-Oper. Res.
Volume 30, Number 2, 1996
Page(s) 127 - 142
DOI https://doi.org/10.1051/ro/1996300201271
Published online 10 February 2017
  • 1. M. ABRAMOWITZ and I. A. STEGUN, Handbook of Mathematical functions, Dover Publications, New York, 1965. [Zbl: 0171.38503] [Google Scholar]
  • 2. B. BOLLOBÁS, Random Graphs, Academic Press, 1985. [MR: 809996] [Zbl: 0567.05042] [Google Scholar]
  • 3. B. BOLLOBÁS and A. THOMASON, Random graphs of small order, Random Graphs'83, Annals of Discrete Math., 1985, 28, pp. 47-97. [MR: 860586] [Zbl: 0588.05040] [Google Scholar]
  • 4. R. E. BURKARD and U. DERIGS, Assignment and Matching Problems: Solution Methods with FORTRAN-Programs, Springer Lecture Notes in Economics and Mathematical Systems, 1980, 184. [MR: 610241] [Zbl: 0436.90069] [Google Scholar]
  • 5. U. DERIGS, The shortest augmenting path method for solving assignment problems, Annals of Operations Research, 1985, 4, pp. 57-102. [MR: 948014] [Google Scholar]
  • 6. U. DERIGS, Programming in networks and graphs, Springer Lectures Notes in Economics and Mathematical Systems, 1988, 300. [MR: 1117224] [Zbl: 0658.90031] [Google Scholar]
  • 7. P. ERDÖS and A. RÉNYI, On random matrices, Publ. Math. Inst. Hungar. Acad. Sci., 1964, 8, pp. 455-461. [MR: 167496] [Zbl: 0133.26003] [Google Scholar]
  • 8. J. B. G. FRENK, M. VAN HOUWENINGE and A. H. G. RINNOOY KAN, Order statistics and the linear assignment problem, Report 8609/A, Econometric Institute, Erasmus University, Rotterdam, The Netherlands, 1986. [Zbl: 0636.62008] [Google Scholar]
  • 9. H. N. GABOW and R. E. TARJAN, Algorithms for two bottleneck optimization problems, J. of Algorithms, 1988, 9, pp. 411-417. [MR: 955149] [Zbl: 0653.90087] [Google Scholar]
  • 10. J. E. HOPCROFT and R. M. KARP, An n5/2 algorithm for maximum matchings in bipartite graphs, SIAM J. Comput, 1973, 2, pp. 225-231. [MR: 337699] [Zbl: 0266.05114] [Google Scholar]
  • 11. R. M. KARP, An algorithm to solve the m x n assignment problem in expected time O (mn log n), Networks, 1980, 10, pp. 143-152. [MR: 569006] [Zbl: 0441.68076] [Google Scholar]
  • 12. R. M. KARP, An upper bound on the expected cost of an optimal assignment, Technical report, Computer Sc. Div., Univ. of California, Berkeley, 1984. [Zbl: 0639.90066] [Google Scholar]
  • 13. S. LANG, Complex Analysis, Springer, 1985. [MR: 788885] [Zbl: 0562.30001] [Google Scholar]
  • 14. A. J. LAZARUS, The assignment problem with uniform (0, 1) cost matrix, Master's thesis, Department of Mathematics, Princeton University, 1979. [Google Scholar]
  • 15. B. OLIN, Asymptotic properties of random assignment problems. PhD-thesis, Division of Optimization and Systems Theory, Department of Mathematics, Royal Institute of Technology, Stockholm, 1992. [MR: 2714678] [Google Scholar]
  • 16. E. M. PALMER, Graphical Evolution, J. Wiley & Sons, 1985. [MR: 795795] [Zbl: 0566.05002] [Google Scholar]
  • 17. D. W. WALKUP, On the expected value of a random assignment problem, SIAM J. Comput., 1979, 8, pp. 440-442. [MR: 539262] [Zbl: 0413.68062] [Google Scholar]
  • 18. D. W. WALKUP, Matchings in random regular bipartite digraphs, Discrete Mathematics, 1980, 31, pp. 59-64. [MR: 578061] [Zbl: 0438.05031] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.