Free Access
Issue
RAIRO-Oper. Res.
Volume 31, Number 4, 1997
Page(s) 399 - 427
DOI https://doi.org/10.1051/ro/1997310403991
Published online 10 February 2017
  • 1. E. B. BALAS, Intersection n-cuts-a new type of cutting planes for integer programming, Operat. Research, 1971, 19, p. 19-39. [Zbl: 0219.90035] [Google Scholar]
  • 2. F. L. BAUER, Algorithms 153 Gomory; Comunications of the ACM, 1963, 6, p. 68. [Google Scholar]
  • 3. R. BIXBY et W. CUNNINGHAM, Converting linear programs to network problems; Maths of Operat. Research, 1980, 5, p. 321-357. [MR: 594849] [Zbl: 0442.90095] [Google Scholar]
  • 4. V. J. BOWMAN et G. L. NEMHAUSER, A finiteness proof for modified Dantzig cuts in integer programming: Naval Research Log Quarter, 1970, 17, p. 309-313. [MR: 275874] [Zbl: 0215.59001] [Google Scholar]
  • 5. V. J. BOWMAN et G. L. NEMHAUSER, Deep cuts in integer programming; Operat Research, 1971, 8, p. 89-111. [MR: 312902] [Google Scholar]
  • 6. M. CARTER, A survey on practical applications of examination timetabling algorithms; Operat Research, 1986, 34, 2, p. 193-302. [MR: 861041] [Google Scholar]
  • 7. A. CHARNES et W. COOPER, Management models and industrial applications of linear programming, J. WILEY and sons, 1961. [MR: 157773] [Zbl: 0107.37004] [Google Scholar]
  • 8. V. CHVATAL, Cutting planes and combinatorics; European Journal of combinatorics, 1985, 6, p. 217-226. [MR: 818595] [Zbl: 0581.05015] [Google Scholar]
  • 9. R. J. DAKIN, A tree search algorithm for mixed integer programming problems, The Computer Journal, 1965, 8, p. 250-255. [MR: 187937] [Zbl: 0154.42004] [Google Scholar]
  • 10. P. D. DAMICH, R. KANNAN et L. TROTTER, Hermite normal form computation using modulo determinant arithmetic: Math. Operat. Research, 1987, 12, 1, p. 50-59. [MR: 882842] [Zbl: 0624.65036] [Google Scholar]
  • 11. J. EDMONDS, F. GILES, Total dual integrality of linear inequality Systems in Progress in Combinatorial Optimization, Acad. Press. Toronto, 1984, p. 117-129. [MR: 771873] [Zbl: 0555.90078] [Google Scholar]
  • 12. D. FAYARD et G. PLATEAU, An efficient algorithm for the 0-1 knapsack problem, R. M. NAUSS, Management Sciences, 1977, 24, p. 918-919. [Zbl: 0806.90089] [Google Scholar]
  • 13. M. GAREY et D. JOHNSSON, Computer and intractability; W. FREEMAN and Co. N.Y., 1979. [Zbl: 0411.68039] [Google Scholar]
  • 14. R. GARFINKEL et G. L. NEMHAUSER, Integer programming; J. WILEY and sons, N.Y., 1972. [MR: 381688] [Zbl: 0259.90022] [Google Scholar]
  • 15. A. M. GEOFFRION, Lagrangean relaxation for integer programming; Math Programming Study 2, 1974, p. 82-114. [MR: 439172] [Zbl: 0395.90056] [Google Scholar]
  • 16. F. GLOVER, Generalized cuts in Diophantine programming, Management Sciences 13, 1966-1967, p. 254-268. [MR: 202470] [Zbl: 0158.18701] [Google Scholar]
  • 17. S. GODANO, Méthodes géométriques pour la programmation linéaire, Thèse Université Blaise Pascal, Clermont-Ferrand, 1994. [Google Scholar]
  • 18. R. E. GOMORY, Outlines of an algorithm for integer solutions to linear programs, Bull American Math. Soc., 1958, 64, p. 275-278. [MR: 102437] [Zbl: 0085.35807] [Google Scholar]
  • 19. R. E. GOMORY, An algorithm for integer solutions to linear programs, Recent Advances in Math. programming. (R. L. GRAVES and P. WOLFE Eds.), Mac Graw Hill, N.Y., 1963, p. 269-302. [MR: 174390] [Zbl: 0235.90038] [Google Scholar]
  • 20. M. GONDRAN, Un outil pour la programmation en nombres entiers, la méthode des congruences décroissantes : RAIRO 3, 1973, p. 35-54. [EuDML: 104575] [MR: 373598] [Zbl: 0274.90032] [Google Scholar]
  • 21. M. GROTSCHEL, L. LOVACZ et A. SCHRIJVER, The ellipsoid method and combinatorial optimization, Springer-Verlag, Heidelberg, 1986. [Google Scholar]
  • 22. M. HELD et R. KARP, The travelling salesman problem and minimum spanning trees, Operat. Research 18, 1970, p. 1138-1162. [MR: 278710] [Zbl: 0226.90047] [Google Scholar]
  • 23. A. HOFFMAN et J. KRUSKAL, Integral boundary points of integer polyedra in Linear Inequalities and Related Systems, H. KUHN and A. TUCKER Eds., Princeton Univ. Press, 1986, p. 223-246. [Zbl: 0072.37803] [Google Scholar]
  • 24. R. KANNAN et A. BACHEM, Polynomial algorithms for Computing the Smith and Hermite normal forms of an integer matrix; SIAM Journ. Comput 8, 1979, 4, p. 499-507. [Zbl: 0446.65015] [Google Scholar]
  • 25. H. LANGMAACK, Algorithm 263 Gomory 1 [H]; Communications of the ACM, 1965, 8, p. 601-602. [Google Scholar]
  • 26. H. LENSTRA, Integer Programming with a flxed number of variables, Maths of Operat. Research, 1983, 8, p. 538-548. [Zbl: 0524.90067] [Google Scholar]
  • 27. L. G. PROLL, Certification of algorithm 263A [H] Gomory 1, Comm. ACM 13, 1970, p. 326-327. [Google Scholar]
  • 28. I. ROSEMBERG, On Chvatal's cutting planes in integer programming, Mathematische Operation Forschung und Statistik, 1975, 6, p. 511-522. [MR: 403657] [Zbl: 0324.90046] [Google Scholar]
  • 29. A. SCHRIJVER, Theory of linear and integer programming, Wiley, Chichester, 1986. [MR: 874114] [Zbl: 0970.90052] [Google Scholar]
  • 30 A. V. SRINIVASAN, An investigation of some computational aspects of integer programming, JACM 12, 1965, p. 525-535. [Zbl: 0154.42003] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.