Free Access
Issue
RAIRO-Oper. Res.
Volume 31, Number 4, 1997
Page(s) 399 - 427
DOI https://doi.org/10.1051/ro/1997310403991
Published online 10 February 2017
  • 1. E. B. BALAS, Intersection n-cuts-a new type of cutting planes for integer programming, Operat. Research, 1971, 19, p. 19-39. [Zbl: 0219.90035]
  • 2. F. L. BAUER, Algorithms 153 Gomory; Comunications of the ACM, 1963, 6, p. 68.
  • 3. R. BIXBY et W. CUNNINGHAM, Converting linear programs to network problems; Maths of Operat. Research, 1980, 5, p. 321-357. [MR: 594849] [Zbl: 0442.90095]
  • 4. V. J. BOWMAN et G. L. NEMHAUSER, A finiteness proof for modified Dantzig cuts in integer programming: Naval Research Log Quarter, 1970, 17, p. 309-313. [MR: 275874] [Zbl: 0215.59001]
  • 5. V. J. BOWMAN et G. L. NEMHAUSER, Deep cuts in integer programming; Operat Research, 1971, 8, p. 89-111. [MR: 312902]
  • 6. M. CARTER, A survey on practical applications of examination timetabling algorithms; Operat Research, 1986, 34, 2, p. 193-302. [MR: 861041]
  • 7. A. CHARNES et W. COOPER, Management models and industrial applications of linear programming, J. WILEY and sons, 1961. [MR: 157773] [Zbl: 0107.37004]
  • 8. V. CHVATAL, Cutting planes and combinatorics; European Journal of combinatorics, 1985, 6, p. 217-226. [MR: 818595] [Zbl: 0581.05015]
  • 9. R. J. DAKIN, A tree search algorithm for mixed integer programming problems, The Computer Journal, 1965, 8, p. 250-255. [MR: 187937] [Zbl: 0154.42004]
  • 10. P. D. DAMICH, R. KANNAN et L. TROTTER, Hermite normal form computation using modulo determinant arithmetic: Math. Operat. Research, 1987, 12, 1, p. 50-59. [MR: 882842] [Zbl: 0624.65036]
  • 11. J. EDMONDS, F. GILES, Total dual integrality of linear inequality Systems in Progress in Combinatorial Optimization, Acad. Press. Toronto, 1984, p. 117-129. [MR: 771873] [Zbl: 0555.90078]
  • 12. D. FAYARD et G. PLATEAU, An efficient algorithm for the 0-1 knapsack problem, R. M. NAUSS, Management Sciences, 1977, 24, p. 918-919. [Zbl: 0806.90089]
  • 13. M. GAREY et D. JOHNSSON, Computer and intractability; W. FREEMAN and Co. N.Y., 1979. [Zbl: 0411.68039]
  • 14. R. GARFINKEL et G. L. NEMHAUSER, Integer programming; J. WILEY and sons, N.Y., 1972. [MR: 381688] [Zbl: 0259.90022]
  • 15. A. M. GEOFFRION, Lagrangean relaxation for integer programming; Math Programming Study 2, 1974, p. 82-114. [MR: 439172] [Zbl: 0395.90056]
  • 16. F. GLOVER, Generalized cuts in Diophantine programming, Management Sciences 13, 1966-1967, p. 254-268. [MR: 202470] [Zbl: 0158.18701]
  • 17. S. GODANO, Méthodes géométriques pour la programmation linéaire, Thèse Université Blaise Pascal, Clermont-Ferrand, 1994.
  • 18. R. E. GOMORY, Outlines of an algorithm for integer solutions to linear programs, Bull American Math. Soc., 1958, 64, p. 275-278. [MR: 102437] [Zbl: 0085.35807]
  • 19. R. E. GOMORY, An algorithm for integer solutions to linear programs, Recent Advances in Math. programming. (R. L. GRAVES and P. WOLFE Eds.), Mac Graw Hill, N.Y., 1963, p. 269-302. [MR: 174390] [Zbl: 0235.90038]
  • 20. M. GONDRAN, Un outil pour la programmation en nombres entiers, la méthode des congruences décroissantes : RAIRO 3, 1973, p. 35-54. [EuDML: 104575] [MR: 373598] [Zbl: 0274.90032]
  • 21. M. GROTSCHEL, L. LOVACZ et A. SCHRIJVER, The ellipsoid method and combinatorial optimization, Springer-Verlag, Heidelberg, 1986.
  • 22. M. HELD et R. KARP, The travelling salesman problem and minimum spanning trees, Operat. Research 18, 1970, p. 1138-1162. [MR: 278710] [Zbl: 0226.90047]
  • 23. A. HOFFMAN et J. KRUSKAL, Integral boundary points of integer polyedra in Linear Inequalities and Related Systems, H. KUHN and A. TUCKER Eds., Princeton Univ. Press, 1986, p. 223-246. [Zbl: 0072.37803]
  • 24. R. KANNAN et A. BACHEM, Polynomial algorithms for Computing the Smith and Hermite normal forms of an integer matrix; SIAM Journ. Comput 8, 1979, 4, p. 499-507. [Zbl: 0446.65015]
  • 25. H. LANGMAACK, Algorithm 263 Gomory 1 [H]; Communications of the ACM, 1965, 8, p. 601-602.
  • 26. H. LENSTRA, Integer Programming with a flxed number of variables, Maths of Operat. Research, 1983, 8, p. 538-548. [Zbl: 0524.90067]
  • 27. L. G. PROLL, Certification of algorithm 263A [H] Gomory 1, Comm. ACM 13, 1970, p. 326-327.
  • 28. I. ROSEMBERG, On Chvatal's cutting planes in integer programming, Mathematische Operation Forschung und Statistik, 1975, 6, p. 511-522. [MR: 403657] [Zbl: 0324.90046]
  • 29. A. SCHRIJVER, Theory of linear and integer programming, Wiley, Chichester, 1986. [MR: 874114] [Zbl: 0970.90052]
  • 30 A. V. SRINIVASAN, An investigation of some computational aspects of integer programming, JACM 12, 1965, p. 525-535. [Zbl: 0154.42003]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.