Free Access
RAIRO-Oper. Res.
Volume 32, Number 3, 1998
Performance Evaluation/Evaluation de performances
Page(s) 271 - 287
Published online 10 February 2017
  • 1. C. ALEXOPOULOS, A note on state space decomposition methods for analyzing stochastic flow networks, IEEE Transactions on Reliability, 1995, 44, pp. 354- 357. [Google Scholar]
  • 2. M. O. BALL, Computational complexity of network reliability analysis an overview, IEEE Transactions on Reliability, 1986, 35, pp.230-239. [Zbl: 0602.90061] [Google Scholar]
  • 3. H. CANCELA, M. EL KHADIRI, A recursive variance-reduction algorithm for estimating communication-network reliability, IEEE Transactions on Reliability, 1995, 44, pp. 599-602. [Google Scholar]
  • 4. S. BULTEAU, M. EL KHADIRI, A Recursive Importance Sampling Estimator for a Flow Network Reliability Problem, submitted to Naval Research Logistics, 1996. [Zbl: 1142.90332] [Google Scholar]
  • 5. S. BULTEAU, M. EL KHADIRI, A Monte Carlo algorithm based on a state space decomposition methodology for flow network reliability evaluation, Technical Report PI 1012, I.R.I.S.A., Campus de Beaulieu, Rennes, France, 1996. [Zbl: 1091.65500] [Google Scholar]
  • 6. J. CARLIER, O. THEOLOGOU, Factoring & reductions for networks with imperfect vertices, IEEE Transactions on Reliability, 1991, 40, pp.210-217. [Zbl: 0729.90647] [Google Scholar]
  • 7. P. DOULLIEZ, E. JAMOULLE, Transportation networks with random arc capacities, R.A.I.R.O., 1972, 5, pp. 45-59. [EuDML: 104557] [MR: 343881] [Zbl: 0249.90025] [Google Scholar]
  • 8. M. EL KHADIRI, Direct evaluation and simulation of communication network reliability parameters sequential and memory distributed parallel algorithms, PhD thesis, Rennes I, Campus de Beaulieu, 35042 Rennes, France, December 1992. [Google Scholar]
  • 9. S. BULTEAU, Étude topologique des réseaux de communication : fiabilité et vulnérabilité, PhD thesis, Rennes I, Campus de Beaulieu, 35042 Rennes, France, November 1997. [Google Scholar]
  • 10. T. ELPERIN I. GERTSBAKH, M. LOMONOSOV, Estimation of network reliability using graph evolution models, IEEE Transactions on Reliability, 1991, 40, pp. 572-581. [Zbl: 0739.90023] [Google Scholar]
  • 11. J. R. EVANS, Maximal flow in probabilistic graphs - the discrete case, Networks, 1976, 6, pp. 161-183. [MR: 418886] [Zbl: 0339.90017] [Google Scholar]
  • 12. G. S. FISHMAN, Principles of Discrete Event Digital Simulation, John Wiley and Sons. Inc., 1978. [Zbl: 0537.68104] [MR: 540206] [Google Scholar]
  • 13. G. S. FISHMAN, T. D. SHAW, Evaluating reliability of stochastic flow networks, Probability in the Engineering and Informational Sciences, 1989, 3, pp. 493-509. [Zbl: 1134.90326] [Google Scholar]
  • 14. J. M. HAMMERSLEY, D. C. HANDSCOMB, Monte Carlo Methods, Halsted Press, Wiley and Sons. Inc., New York, 1979. [Zbl: 0121.35503] [Google Scholar]
  • 15. S. H. LEE, Reliability in a flow network, IEEE Transactions on Reliability, 1980, 29, pp.24-26. [Zbl: 0428.90024] [Google Scholar]
  • 16. O. THEOLOGOU, Contribution to network reliability evaluation, PhDthesis, Dept. of Computer Science, University of Compiègne, Compiègne, France, 1990. [Google Scholar]
  • 17. K. S. TRIVEDI, Probability and Statistics with Reliability, Queuing and Computer Science Applications, Prentice-Hall, Inc., Englewood Cliffs, 1982. [MR: 657943] [Zbl: 0513.60001] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.