Free Access
Issue |
RAIRO-Oper. Res.
Volume 51, Number 2, April-June 2017
|
|
---|---|---|
Page(s) | 329 - 341 | |
DOI | https://doi.org/10.1051/ro/2016024 | |
Published online | 27 February 2017 |
- S. Abe, Support Vector Machines for Pattern Classification. Advances in Pattern Recognition, 2nd edition. Springer, London, UK (2010). [Google Scholar]
- K. Bennett and E. Bredensteiner, Geometry in Learning, in Geometry at Work, edited by C. Gorini. Mathematical Association of America, Washington D.C. (2000) 132–145. [Google Scholar]
- K. Bennett and E. Bredensteiner, Duality and Geometry in SVMs, In Proc. of 17th International Conference on Machine Learning, edited by P. Langley. San Francisco (2000) 65–72. [Google Scholar]
- N. Couellan, S. Jan, T. Jorquera and J.-P. Georgé, Self Adaptive Support Vector Machine: A Multi-Agent Optimization Perspective. Expert Syst. Appl. 42 (2015) 4284–4298. [Google Scholar]
- F. Facchinei and C. Kanzow, Generalized Nash Equilibrium Problems. Annals OR 175 (2010) 177–211. [CrossRef] [Google Scholar]
- J. Fürnkranz, Machine Learning in Games: A Survey, in Machines that Learn to Play Games. Nova Science Publishers (2001) 11–59. [Google Scholar]
- K. Hausken and R. Cressman, Formalization of Multi-level games. Int. Game Theory Rev. 6 (2004) 195–221. [CrossRef] [MathSciNet] [Google Scholar]
- N. Japkowicz and S. Stephen, The class imbalance problem: A systematic study. Intel. Data Anal. 6 (2002) 429–449. [Google Scholar]
- G. Koltsidas and F.-N. Pavlidou, A Game Theoretical Approach to Clustering of Ad-Hoc and Sensor Networks. Telecomm. Systems 47 (2011) 81–93. [CrossRef] [Google Scholar]
- D.G. Luenberger, Optimization by Vector Space Methods, 1st edition. John Wiley & Sons, Inc., New York, USA (1997) [Google Scholar]
- A. Neyman and S. Sorin (eds.), Stochastic Games and Applications, Proc. of the NATO Advanced Study Institute, Stony Brook, New York, USA, 1999, Series: Nato Science Series C: (closed), Vol. 570 (2003) [Google Scholar]
- S. Parsons and M. Wooldridge, Game Theory and Decision Theory in Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems 5 (2002) 243–254. [Google Scholar]
- M. Petrovskiy, A Game Theory Approach to Pairwise Classification with Support Vector Machines. Proc. of the 2004 International Conference on Machine Learning and Application. ICMLAs, IEEE Computer Society (2004) 115–122. [Google Scholar]
- B. Schölkopf and A. Smola, Learning with Kernels. MIT, Cambridge (2002). [Google Scholar]
- S. Sra, S. Nowozin and S.J. Wright, Optimization for Machine Learning. MIT Press, Cambridge (2011). [Google Scholar]
- G.M. Weiss, Mining with Rarity: A Unifying Framework. ACM SIGKDD Explorations Newsletter 6 (2004) 7–19. [CrossRef] [Google Scholar]
- G. Weiss, A modern Approach to Distributed Artifical Intelligence. Intelligent Robotics & Autonomous Agents Series, MIT Press, Cambridge (2000). [Google Scholar]
- J. Weston and C. Watkins, Support Vector Machines for Multi-Class Pattern Recognition. Proc. of ESANN’1999, Bruges, Belgium (1999) 219–224. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.