Free Access
RAIRO-Oper. Res.
Volume 51, Number 4, October-December 2017
Page(s) 1289 - 1299
Published online 27 November 2017
  • R. Bellman, I. Glicksberg and O. Gross, On the “bang-bang” control problem. Quart. Appl. Math. 14 (1956) 11–18. [CrossRef] [MathSciNet] [Google Scholar]
  • H.O. Fattorini, Time-optimal control of solutions of operational differenital equations. J. Soc. Ind. Appl. Math. Ser. A Control 2 (1964) 54–59. [CrossRef] [Google Scholar]
  • H.O. Fattorini, A remark on the “bang-bang” principle for linear control systems in infinite dimensional spaces. SIAM J. Control 6 (1968) 109–113. [CrossRef] [Google Scholar]
  • H.O. Fattorini and H.O. Fattorini. Infinite dimensional linear control systems. The time optimal and norm optimal problems. Vol. 201 of North-Holland Mathematics Studies. Elsevier Science B.V., Amsterdam (2005). [Google Scholar]
  • J.-L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Avant propos de P. Lelong. Dunod, Paris (1968). [Google Scholar]
  • Tucsnak and Weiss, Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel (2009). [Google Scholar]
  • J. Lohéac and M. Tucsnak, Maximum principle and bang-bang property of time optimal controls for Schrödinger type systems. SIAM J. Control Optim. 51 (2013) 4016–4038. [Google Scholar]
  • S. Micu, I. Roventa and M. Tucsnak, Time optimal boundary controls for the heat equation. J. Function. Anal. 263 (2012) 25–49. [CrossRef] [Google Scholar]
  • G. Wang, null controllability for the heat equation and its consequences for the time optimal control problem. SIAM J. Control Optim. 47 (2008) 1701–1720. [Google Scholar]
  • J.-Y. Chemin and Cl. David, Sur la construction de grandes solutions pour des équations de Schrödinger de type “masse critique”, Séminaire Laurent Schwartz – EDP et applications (2013). [Google Scholar]
  • J.-Y. Chemin and Cl. David, From an initial data to a global solution of the nonlinear Schrödinger equation: a building process. Int. Math. Res. Not. 2016 (2016) 2376–2396. [CrossRef] [Google Scholar]
  • H. Bahouri and P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations. Amer. J. Math. 112 (1999) 131–175. [CrossRef] [Google Scholar]
  • J.-P. Puel, Contrôle et équations aux dérivées partielles. Journées mathématiques X-UPS (1999) 169–188. [Google Scholar]
  • Unicité du prolongement des solutions pour quelques opérateurs paraboliques. Mem. Coll. Sci. Univ. Kyoto, Ser. A31 (1958) 219–239. [Google Scholar]
  • G. Lebeau and L. Robbiano, Contrôle exact de l’équation de la chaleur. Commun. Partial Differ. Equ. 20 (1995) 335–356. [Google Scholar]
  • J.-M. Coron, Quelques résultats sur la commandabilité et la stabilisation des systèmes non linéaires. Journées mathématiques X-UPS (1999) 123–168. [Google Scholar]
  • Wei Liang Chow, Uber Systeme von Linearen Partiellen Differentialgleichungen Erster Ordnung. Math. Ann. 117 (1939) 98–105. [Google Scholar]
  • L. Wang, Qishu Yan Bang-bang property of time optimal controls for some semilinear heat equation. J. Optim. Theory Appl. 165 (2015) 263278. [Google Scholar]
  • E. Trélat. Contrôle optimal. Mathématiques Concrètes (Concrete Mathematics). Théorie & applications (Theory and applications). Vuibert, Paris (2005). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.