Free Access
RAIRO-Oper. Res.
Volume 51, Number 4, October-December 2017
Page(s) 1177 - 1188
Published online 24 November 2017
  • W.L. Eastman, S. Even and I.M. Issacs, Bounds for the optimal scheduling of jobs on processors. Manag. Sci. 11 (1964) 268–279. [CrossRef] [Google Scholar]
  • G.V. Gens and E.V. Levner, Fast approximation algorithms for job sequencing with deadlines. Discrete Appl. Math. 3 (1981) 313–318. [Google Scholar]
  • O. Ibarra and C.E. Kim, Fast approximation algorithms for the knapsack and sum of subset problems. J. ACM 22 (1975) 463–468. [CrossRef] [MathSciNet] [Google Scholar]
  • I. Kacem, Approximation algorithms for the makespan minimization with positive tails on a single machine with a fixed non-availability interval. J. Combin. Optim.. 17 (2009) 117–133. [CrossRef] [Google Scholar]
  • I. Kacem, Y. Lanuel and M. Sahnoune, Strongly Fully Polynomial Time Approximation Scheme for the two-parallel capacitated machines scheduling problem. Int. J. Plann. Scheduling 1 (2011) 32–41. [CrossRef] [Google Scholar]
  • I. Kacem, Fully Polynomial-Time Approximation Scheme for the Weighted Total Tardiness Minimization with a Common Due Date. Discrete Appl. Math. 158 (2010) 1035–1040. [Google Scholar]
  • I. Kacem and H. Kellerer, Fast approximation algorithms to minimize a special weighted flow-time criterion on a single achine with a non-availability interval and release dates. J. Sched. 14 (2011) 257–265. [CrossRef] [Google Scholar]
  • I. Kacem and R.A. Mahjoub, Fully Polynomial Time Approximation Scheme for the Weighted Flow-time Minimization on a Single Machine with a Fixed Non-Availability Interval. Comput. Ind. Eng. 56 (2009) 1708–1712. [Google Scholar]
  • I. Kacem and M. Haouari, Approximation algorithms for single machine scheduling with one unavailability period. 4OR: A Quarterly J. Oper. Res. 7 (2009) 79–92. [CrossRef] [Google Scholar]
  • H. Kellerer and V.A. Strusevich, A fully polynomial approximation scheme for the single machine weighted total tardiness problem with a common due date. Theor. Comput. Sci. 369 (2006) 230–238. [Google Scholar]
  • H. Kellerer and V.A. Strusevich, Fully polynomial approximation schemes for a symmetric quadratic knapsack problem and its scheduling applications. Algorithmica 57 (2010) 769–795. [Google Scholar]
  • M.Y. Kovalyov and W. Kubiak, A fully polynomial approximation scheme for weighted earliness-tardiness problem. Oper. Res. 47 (1999) 757–761. [Google Scholar]
  • M.Y. Kovalyov and W. Kubiak, Fully polynomial approximation schemes for decomposable partition problems. Working Paper 98-15 of the Faculty of Business Administration, Memorial University of Newfoundland. Presentation in Operations Research Proceedings 1999, Selected papers of the Sympos. Oper. Res. (SOR 99), Magdeburg (1999) 397–401. [Google Scholar]
  • C.Y. Lee and S.D. Liman, Capacitated two-parallel machines sceduling to minimize sum of job completion times. Discrete Appl. Math. 41 (1993) 211–222. [Google Scholar]
  • C.-J. Liao, C-W. Chao and C.-H. Lin, Minimizing the sum of job completion times on capacitated two-parallel machines. Eur. J. Oper. Res. 197 (2009) 475–481. [Google Scholar]
  • S. Sahni, Algorithms for scheduling independent tasks. J. ACM 23 (1976) 116–127. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Schmidt, Scheduling with limited machine availability. Eur. J. Oper. Res. 121 (2000) 1–15. [Google Scholar]
  • W.E. Smith, Various optimizers for single stage production. Nav. Res. Log. Quarterly 3 (1956) 59–66. [CrossRef] [MathSciNet] [Google Scholar]
  • G.J. Woeginger, When does a dynamic programming formulation guarantee the existence of a fully polynomial time approximation scheme (FPTAS)? INFORMS J. Comput. 12 (2000) 57–75. [Google Scholar]
  • Z. Xu, A strongly polynomial FPTAS for the symmetric quadratic knapsack problem. Eur. J. Oper. Res. 218 (2012) 377–381. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.