Open Access
Issue
RAIRO-Oper. Res.
Volume 52, Number 2, April–June 2018
Page(s) 513 - 528
DOI https://doi.org/10.1051/ro/2018031
Published online 25 July 2018
  • R. Alvarez-Valdés and J.M. Tamarit Goerlich. The project scheduling polyhedron: dimension, facets, and lifting theorems. Eur. J. Oper. Res. 67 (1993) 204–220 [CrossRef] [Google Scholar]
  • P. Baptiste and S. Demassey. Tight LP bounds for resource constrained project scheduling. OR Spectrum 26 (2004) 251–262 [CrossRef] [Google Scholar]
  • P. Brucker, A. Drexl, R. Möhring, K. Neumann and E. Pesch. Resource-constrained project scheduling: notation, classification, model, and methods. Eur. J. Oper. Res. 112 (1999) 3–41. [CrossRef] [Google Scholar]
  • P. Brucker and S. Knust. A linear programming and constraint propagation-based lower bound for the rcpsp. Eur. J. Oper. Res. 127 (2000) 355–362. [CrossRef] [Google Scholar]
  • J. Damay, A. Quilliot and E. Sanlaville. Linear programming based algorithms for preemptive and non-preemptive rcpsp. Eur. J. Oper. Res. 182 (2007) 1012–1022. [CrossRef] [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability: a Guide to the Theory of NP-Completeness, edited by W.H. Freeman (1979). [Google Scholar]
  • S. Gualandi and F. Malucelli. Exact solution of graph coloring problems via constraint programming and column generation. INFORMS J. Comput. 24 (2011) 1–20. [Google Scholar]
  • P. Hansen, M. Labbé and D. Schindl. Set covering and packing formulations of graph coloring: slgorithms and first polyhedral results. Discret. Optim. 6 (2009) 135–147. [CrossRef] [Google Scholar]
  • J.R. Hardin, G.L. Nemhauser and M.W.P. Savelsbergh, Strong valid inequalities for the resource-constrained scheduling problem with uniform resource requirements. Discret. Optim. 5 (2008) 19–35. [CrossRef] [Google Scholar]
  • W. Herroelen, E. Demeulemeester and B. De Reyck, An integrated classification scheme for resource scheduling. Technical report, Department of applied economics K.U.Leuven, (1999). [Google Scholar]
  • R. Klein, Scheduling of Resource Constraints Projects. Kluwer Academic Publishers, Boston (1999). [Google Scholar]
  • R. Kolish and A. Sprecher, http://www.om-db.wi.tum.de/psplib/. [Google Scholar]
  • E. Malaguti, M. Monaci and P. Toth, An exact approach for the vertex coloring problem. Discret. Optim. 8 (2010) 174–190 [CrossRef] [Google Scholar]
  • A. Mehrotra and M. Trick, A column generation approach for graph coloring. INFORMS J. Comput. 8 (1996) 344–354. [CrossRef] [Google Scholar]
  • A. Mingozzi, V. Maniezzo, S. Ricciardelli and L. Bianco, An exact algorithm for the resource-constrained project scheduling based on a new mathematical formulation. Manag. Sci. 44 (1998) 714–729. [CrossRef] [Google Scholar]
  • A. Moukrim, A. Quilliot and H. Toussaint, Branch and price for preemptive resource constrained project scheduling problem based on interval orders in precedence graphs, in 6th Workshop on Computational Optimization, Kraków, Poland (2013). [Google Scholar]
  • J.H. Patterson and W.D. Huber, A horizon-varying, zero-one approach to project scheduling problem. Manag. Sci. 20 (1974) 990–998. [CrossRef] [Google Scholar]
  • J.H. Patterson and G.W. Roth, Scheduling a project under multiple resource constraints: a zero-one programming approach. AIIE Trans. 8 (1976) 449–455. [CrossRef] [Google Scholar]
  • A.A. Pritsker, L.J. Watters and P.M. Wolfe, Multi-project scheduling with limited resources: a zero-one programming approach. Manag. Sci. 16 (1969) 93–108. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.