Free Access
RAIRO-Oper. Res.
Volume 52, Number 4-5, October–December 2018
Page(s) 1351 - 1376
Published online 06 December 2018
  • A. Atighehchian, M. Bijari and H. Tarkesh, A novel hybrid algorithm for scheduling steelmaking continuous casting production. Comput. Oper. Res. 36 (2009) 2450–246. [Google Scholar]
  • S. Basu and G. Dutta, A Survey of the Non-Optimization techniques used in an integrated steel plant. Manag. Dyn. 6 (2006) 33–68. [Google Scholar]
  • A. Bellabdaoui and J. Teghem, A mixed-integer linear programming model for the continuous casting planning. Int. J. Prod. Econom. 104 (2006) 260–270. [CrossRef] [Google Scholar]
  • A. Bellabdaoui, A. Fiordaliso and J. Teghem, A heuristic algorithm for scheduling the steelmaking continuous casting process. Pac. J. Optim. 1 (2005) 447–464. [Google Scholar]
  • J. Blazewicz, K. Ecker, E. Pesch, G. Schmidt and J. Weglarz, Scheduling Computer Manufacturing Processes. Springer (1996). [CrossRef] [Google Scholar]
  • N. Chakraborti, R. Kumar and D. Jain, A study of the continuous casting mold using a pareto-converging genetic algorithm. Appl. Math. Model. 25 (2001) 287–297. [Google Scholar]
  • P.C. Chang and S.H. Chen, Integrating Dominance Properties with Genetic Algorithms for Parallel Machine Scheduling Problems with Setup Times. Appl. Soft Comput. 11 (2011) 1263–1274. [Google Scholar]
  • L. Chen, N. Bostel, P. Dejax, J.C. Cai and L.F. Xi, A tabu search algorithm for the integrated scheduling problem of container handling systems in a maritime terminal. Eur. J. Oper. Res. 181 (2007) 40–58. [Google Scholar]
  • P.I. Cowling, D. Ouelhadj and S. Petrovic, Dynamic scheduling of steel casting and mill using multi-agents. Prod. Plan. Control 15 (2004) 495–501. [CrossRef] [Google Scholar]
  • B. de Schutter, Designing optimal timing and sequencing strategies for a continuous steel foundry, in Proceedings of the European Control Conference 1999 (ECC’99), Karlsruhe, Germany, Paper 160/BP–2.6, Aug.–Sept. (1999). [Google Scholar]
  • G. Dutta and R. Fourer, A survey of mathematical programming application in integrated steel plants. Manuf. Service Oper. Manag. 3 (2001) 387–400. [CrossRef] [Google Scholar]
  • I. Ferretti, S. Zanoni and L. Zavanella, Production-inventory scheduling using ant system metaheuristic. Int. J. Prod. Econom. 104 (2008) 317–326. [CrossRef] [Google Scholar]
  • M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of Np-Completness. W.H. Freeman and Company, San Francisco (1979). [Google Scholar]
  • J.N.D. Gupta, Two-stage, hybrid flowshop scheduling problem. J. Oper. Res. Soc. 39 (1988) 359–364. [Google Scholar]
  • I. Harjunkoski and I.E. Grossmann, A decomposition approach for the scheduling of a steel plant production. Comput. Chem. Eng. 25 (2001) 1647–1660. [Google Scholar]
  • M. Helal, G. Rabadi and A. Al-Salem, A tabu search algorithm to minimize the makespan for the unrelated parallel machines scheduling problem with setup times. Int. J. Oper. Res. 3 (2006) 182–192. [Google Scholar]
  • J.R. Kalagnanam, M.W. Dawande, M. Trumbo and H.S. Lee, The surplus inventory matching problem in the process industry. Oper. Res. 48 (2000) 505–516. [Google Scholar]
  • C.-H. Ko and S.-F. Wang, Precast production scheduling using multi-objective genetic algorithms. Expert Syst. Appl. 38 (2011) 8293–8302. [Google Scholar]
  • H.S. Lee, S.S. Murthy, S.W. Haider and D.V. Morse, Primary production scheduling at steelmaking industries. IBM J. Res. Develop 40 (1996) 231–252. [CrossRef] [Google Scholar]
  • K. Lee, S.Y. Chang and Y. Hong, Continuous slab caster scheduling and interval graphs. Prod. Plan. Control 15 (2004) 495–501. [CrossRef] [Google Scholar]
  • L. Li, Q. Tang, P. Peng Zheng, L. Zhang and C.A. Floudas, An improved self-adaptive genetic algorithm for scheduling steel-making continuous casting production, in Proceedings of the 6th International Asia Conference on Industrial Engineering and Management Innovation (IEMI2015), Core Theory and Applications of Industrial Engineering, 1: 399–410, Tianjin, July 25–26th (2015). [Google Scholar]
  • R. Linn and W. Zhang, Hybrid flow shop scheduling: a survey. Comput. Ind. Eng. 31 (1999) 57–61. [Google Scholar]
  • H. Missbauer, W. Hauber and W. Stadler, A scheduling system for the steelmaking-continuous casting process. A case study from the steel-making industry. Int. J. Prod. Res. 47 (2009) 4147–4172. [Google Scholar]
  • B. Naderi, M. Zandieh, A.K.G. Balagh and V. Roshanaei, An improved simulated annealing for hybrid flowshops with sequence-dependent setup and transportation times to minimize total completion time and total tardiness. Expert Syst. Appl. 36 (2009) 9625–9633. [Google Scholar]
  • T. Nishi, Y. Hiranaka and M. Inuiguchi, Lagrangian relaxation with cut generation for hybrid flow shop scheduling problems to minimize the total weighted tardiness. Comput. Oper. Res. 37 (2010) 189–198. [Google Scholar]
  • D. Pacciarelli and M. Pranzo, Production scheduling in a steelmaking-continuous casting plant. Comput. Chem. Eng. 28 (2004) 2823–2835. [Google Scholar]
  • Q.K. Pan, An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous casting scheduling. Eur. J. Oper. Res. 250 (2016) 702–714. [Google Scholar]
  • Q.K. Pan, L. Wang, K. Mao, J.H. Zhao and M. Zhang, An effective artificial bee colony algorithm for a real-world hybrid flowshop problem in steelmaking process. IEEE Trans. Autom. Sci. Eng. 10 (2013) 307–322. [Google Scholar]
  • C. Rajendran and D. Chaudhuri, A multi-stage parallel processor flowshop problem with minimum flowtime. Eur. J. Oper. Res. 57 (1992) 11–122. [Google Scholar]
  • R. Ruiz and C. Maroto, A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility. Eur. J. Oper. Res. 169 (2006) 781–800. [Google Scholar]
  • A. Sbihi, A. Bellabdaoui and J. Teghem, Solving a mixed integer linear program with times setup for the steel-continuous casting planning and scheduling problem. Int. J. Prod. Res. 52 (2014) 7276–7296. [Google Scholar]
  • H. Sherali, S. Sarin and M. Kodialam, Models and algorithms for a two-stage production process. Prod. Plan. Control 1 (1990) 27–39. [CrossRef] [Google Scholar]
  • D.F. Shiau, S.C. Cheng and Y.M. Huang, Proportionate flexible flow shop scheduling via a hybrid constructive genetic algorithm. Expert Syst. Appl. 34 (2008) 1133–1143. [Google Scholar]
  • L. Tang, and G. Wang, Decision Support system for the batching problems of steelmaking and continuous-casting production. Omega Int. J. Manag. Sci. 36 (2008) 976–991. [CrossRef] [Google Scholar]
  • L. Tang, J. Liu, A. Rong and Z. Yang, A mathematical programming model for scheduling steelmaking-continuous casting production. Eur. J. Oper. Res. 120 (2000) 423–435. [Google Scholar]
  • L. Tang, J. Liu, A. Rong and Z. Yang, A review of planning and scheduling systems and methods for integrated steel production. Eur. J. Oper. Res. 133 (2001) 1–20. [Google Scholar]
  • L. Tang, P.B. Luh, J. Liu and L. Fang, Steel-making process scheduling using Lagrangian relaxation. Int. J. Prod. Res. 40 (2002) 55–70. [Google Scholar]
  • L. Tang, H. Xuan and J. Liu, A new lagrangian relaxation algorithm for hybrid flow shop scheduling to minimize total weighted completion time. Comput. Oper. Res. 33 (2006) 3344–3359. [Google Scholar]
  • L. Tang, X. Wang and J. Liu, Color-coating production scheduling for coils in inventory in steel industry. Autom. Sci. Eng. IEEE Trans. 5 (2008) 544–549. [CrossRef] [Google Scholar]
  • W.S. Um, Computer simulation of the steelmaking process with ARENA. J. Korean Soc. Maint. Eng. 7 (2002) 77–90. [Google Scholar]
  • H. Xuan and L. Tang, Scheduling a hybrid flow shop with batch production at the last stage. Comput. Oper. Res. 34 (2007) 2178–2733. [Google Scholar]
  • J. Yang, H. Che, F.P. Dou and T. Zhou, Genetic algorithm-based optimization used in rolling schedule. J. Iron Steel Res. Int. 5 (2008) 18–22. [CrossRef] [Google Scholar]
  • V. Yaurima, L. Burtseva and A. Tchernykh, Hybrid flowshop with unrelated machines, sequence dependent setup time, availability constraints and limited buffers. Comput. Ind. Eng. 56 (2009) 1452–1463. [Google Scholar]
  • D.F. Zhu, Z. Zheng and X.Q. Gao, Intelligent optimization-based production planning and simulation analysis for steelmaking and continuous casting process. J. Iron Steel Res. Int. 17 (2010) 19–24. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.