Free Access
Issue |
RAIRO-Oper. Res.
Volume 54, Number 6, November-December 2020
|
|
---|---|---|
Page(s) | 1875 - 1890 | |
DOI | https://doi.org/10.1051/ro/2020133 | |
Published online | 14 December 2020 |
- M. Abdullah, C. Cooper and M. Draief, Viral processes by random walks on random regular graphs. Ann. Appl. Probab. 25 (2015) 477–522. [Google Scholar]
- G.G. Alcaraz and C. Vargas-De-Leon, Modeling control strategies for influenza H1N1 epidemics: SIR models. Rev. Mex. Fis. S 58 (2012) 37–43. [Google Scholar]
- R. Anguelov, J. Banasiak, C. Bright and R. Ouifki, The big unknown: the asymptomatic spread of COVID-19. J. Biomath. 9 (2020) 2005103. [CrossRef] [Google Scholar]
- U.S. Basak, B.K. Datta and P.K. Ghose, Mathematical analysis of an HIV/AIDS epidemic model. Am. J. Math. Stat. 5 (2015) 253–258. [Google Scholar]
- F. Brauer and C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology. Springer (2012). [CrossRef] [Google Scholar]
- R.M. Faye and F. Mora-Camino, La Commande Optimale. L’Harmattan, Paris (2017). [Google Scholar]
- A. Flahault, S. Deguen and A.-J. Valleron, A mathematical model for the European spread of influenza. Eur. J. Epidemiol. 10 (1994) 471–474. [CrossRef] [PubMed] [Google Scholar]
- H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42 (2000) 599–653. [CrossRef] [MathSciNet] [Google Scholar]
- A.D. Lewis, The maximum principle of pontryaginin in optimal control. Available from: https://www.ime.usp.br/ tonelli/pub/maximum-principle.pdf (2006). [Google Scholar]
- Z. Liu, P. Magal, O. Seydi and G. Webb, Predicting the cumulative number of cases for the COVID-19 epidemic in China from early data Preprint medRXiv DOI: 10.1101/2020.03.11.20034314 (2020). [Google Scholar]
- G.C.E. Mbah, D. Omale and B.O. Adejo, A SIR epidemic model for HIV/AIDS infection. Int. J. Sci. Eng. Res. 5 (2014) 479–484. [Google Scholar]
- B. Mbaye Ndiaye, L. Tendeng and D. Seck, Analysis of the COVID-19 pandemic by SIR model and machine learning technics for forecasting. Preprint arXiv:2004.01574v1[q-Bio-PE] (2020). [Google Scholar]
- T.W. Ng, G. Turinici and A. Danchin, A double epidemic model for the SARS propagation. BMC Infectious Diseases 3 (2003) 19. [CrossRef] [PubMed] [Google Scholar]
- B.S. Pujari and S. Shekatka, Multi-city modeling of epidemics using spatial networks: application to 2019-nCov (COVID-19) coronavirus in India. Preprint medRxiv. DOI: https://doi.org/10.1101/2020.03.13.20035386 10.1101/2020.03.13.20035386 (2020). [Google Scholar]
- WHO, Available from: https://www.who.int/csr/disease (2010). [Google Scholar]
- O. Zakary, M. Rachik and I. Elmouki, Multi-regions discrete SIR epidemic model: an optimal control approach. Int. J. Dyn. Control 5 (2017) 917–930. [CrossRef] [PubMed] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.