Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S225 - S251
Published online 09 February 2021
  • S. Alouf, E. Altman and A.P. Azad, Analysis of an M/G/1 queue with repeated inhomogeneous vacations with application to IEEE 802.16e power saving mechanism. In: Proc. QEST. Saint-Malo France (2008) 27–36. [Google Scholar]
  • G. Choudhury, A batch arrival queue with a vacation time under single vacation policy. Comput. Oper. Res. 29 (2002) 1941–1955. [Google Scholar]
  • G. Choudhury, Analysis of the MX/G/1 queueing system with vacation times. Sankhya: Indian J. Stat. 64 (2002) 37–49. [Google Scholar]
  • R.B. Cooper, Introduction to Queueing Theory. Elsevier, Amsterdam (1981). [Google Scholar]
  • B.T. Doshi, Queueing Systems with vacations a survey. Queueing Syst. 1 (1986) 29–66. [Google Scholar]
  • B.T. Doshi, Single sever queues with vacations. In: Stochastic Analysis of Computer and Communication systems, edited by H. Takagi. North-Holland (1990) 217–265. [Google Scholar]
  • S.W. Fuhrmann and R.B. Cooper, Stochastic decomposition in the M/G/1 queue with generalized vacations. Oper. Res. 33 (1985) 1117–1129. [Google Scholar]
  • D.P. Heyman, Optimal operating policies for M/G/1 queueing system. Oper. Res. 16 (1968) 362–382. [Google Scholar]
  • S. Jeyakumar and B. Senthilnathan, Modelling and analysis of a bulk service queueing model with multiple working vacations and server breakdown. RAIRO: OR 51 (2017) 485–508. [Google Scholar]
  • J.C. Ke, Operating characteristic analysis on the MX /G/1 system with a variant vacation policy and balking. Appl. Math. Model. 31 (2007) 1321–1337. [Google Scholar]
  • J.C. Ke, K.B. Huang and W.L. Pearn, The randomized vacation policy for a batch arrival queue. Appl. Math. Model. 34 (2010) 1524–1538. [Google Scholar]
  • J.C. Ke, C.H. Wu and Z.G. Zhang, Recent developments in vacation queueing models: a short survey. Int. J. Oper. Res. 7 (2010) 3–8. [Google Scholar]
  • J.C. Ke, F.M. Chang and T.H. Liu, M/M/c balking retrial queue with vacation. Qual. Technol. Quant. Manage. 16 (2019) 54–66. [Google Scholar]
  • O. Kella, The threshold policy in the M/G/1 queue with server vacations. Nav. Res. Logist. 36 (1989) 111–123. [Google Scholar]
  • V.G. Kulkarni, Modelling and Analysis of Stochastic Systems. Chapman & Hall, London (1995). [Google Scholar]
  • H.S. Lee and M.M. Srinivasan, Control policies for the queueing system. Manage. Sci. 35 (1989) 708–721. [Google Scholar]
  • H.W. Lee, S.S. Lee, J.O. Park and K.C. Chae, Analysis of MX /G/1 queue with N policy and multiple vacations. J. Appl. Prob. 31 (1994) 467–496. [Google Scholar]
  • S.S. Lee, H.W. Lee, S.H. Yoon and K.C. Chae, Batch arrival queue with N policy and single vacation. Comput. Oper. Res. 22 (1995) 173–189. [Google Scholar]
  • K.K. Leung, On the additional delay in an M/G/1 queue with generalized vacations and exhaustive service. Oper. Res. 40 (1992) 272–283. [Google Scholar]
  • Y. Levy and U. Yechiali, Utilization of idle time in an M/G/1 queue with server vacations. Manage. Sci. 22 (1975) 202–211. [Google Scholar]
  • Y. Park and G.U. Hwang, Performance modeling and analysis of the sleep-mode in IEEE 802.16e WMAN. In: Proc. IEEE Vehicular Technology Conference (VTC) (2007) 2801–2806. [Google Scholar]
  • S.M. Ross, Stochastic Process. Wiley. New York (1983). [Google Scholar]
  • J.B. Seo, S.Q. Lee, N.H. Park, H.W. Lee and C.H. Cho, Performance analysis of sleep mode operation in IEEE802.16e. Vehi. Tech. Conf. 2 (2004) 1169–1173. [Google Scholar]
  • L. Tadj and G. Choudhury, Optimal design and control of queues. Top 13 (2005) 359–412. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Takacs, Introduction to the Theory of Queues. Oxford University press, New York (1962). [Google Scholar]
  • H. Takagi, Queueing analysis. In: Vol. 1 of Vacation and Priority Systems. North Holland, Amsterdam (1991). [Google Scholar]
  • N. Tian, Multi stage adaptive vacation policies in an queueing system. Appl. Math. 4 (1992) 12–18. [Google Scholar]
  • N. Tian and Z.G. Zhang, Vacation Queueing Models: Theory and Applications. Springer, New York, USA (2006). [Google Scholar]
  • R. Wolff, Poisson arrivals see time averages. Oper. Res. 30 (1982) 223–231. [Google Scholar]
  • D.Y. Yang, M.F. Chang and J.C. Ke, On an unreliable retrial queue with general repeated attempts and J optional vacations. Appl. Math. Model. 40 (2016) 3275–3288. [Google Scholar]
  • B. Yang, Z. Hou and J. Wu, Analysis of the equilibrium strategies in the Geo/Geo/1 queue with multiple working vacations. Qual. Technol. Quant. Manage. 15 (2018) 663–685. [Google Scholar]
  • Z.G. Zhang and N. Tian, Discrete time queue with multiple adaptive vacations. Queueing Syst. 38 (2001) 419–429. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.