Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S147 - S166
Published online 09 February 2021
  • E. Asadi, F. Habibi, S. Nickel and H. Sahebi, A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain. Appl. Energy 228 (2018) 2235–2261. [Google Scholar]
  • R.H. Ballou and J.M. Masters, Commercial software for locating warehouses and other facilities. J. Bus. Logist. 14 (1993) 71–107. [Google Scholar]
  • M. Bashiri and E. Ghasemi, A selective covering-inventory-routing problem to the location of bloodmobile to supply stochastic demand of blood. Int. J. Ind. Eng. Prod. Res. 29 (2018) 147–158. [Google Scholar]
  • M. Bashiri and H.R. Rezaei, Reconfiguration of supply chain? A two stage stochastic programming. Int. J. Ind. Eng. Prod. Res. 24 (2013) 47–58. [Google Scholar]
  • D. Bertsimas and M. Sim, Robust discrete optimization and network flows. Math. Program. 98 (2003) 49–71. [Google Scholar]
  • D. Bertsimas and M. Sim, The price of robustness. Oper. Res. 52 (2004) 35–53. [Google Scholar]
  • X. Bing, J. Bloemhof-Ruwaard, A. Chaabane and J. Van Der Vorst, Global reverse supply chain redesign for household plastic waste under the emission trading scheme. J. Clean. Prod. 103 (2015) 28–39 [Google Scholar]
  • J. Cortinhal, J. Lopes and T. Melo, Redesigning a three-echelon logistics network over multiple time periods with transportation mode selection and outsourcing opportunities. In: Technical Reports on Logistics of the Saarland Business School No 7, Saarland University of Applied Sciences (2014). [Google Scholar]
  • K. Govindan, M. Fattahi and E. Keyvanshokooh, Supply chain network design under uncertainty: A comprehensive review and future research directions. Eur. J. Oper. Res. 263 (2017) 108–41. [Google Scholar]
  • M. Fattahi, K. Govindan and E. Keyvanshokooh, A multi-stage stochastic program for supply chain network redesign problem with price-dependent uncertain demands. Comput. Oper. Res. 100 (2017) 314–332. [Google Scholar]
  • S. Fazayeli, A. Eydi and I.N. Kamalabadi, Location-routing problem in multimodal transportation network with time windows and fuzzy demands: Presenting a two-part genetic algorithm. Comput. Ind. Eng. 119 (2018) 233–246. [Google Scholar]
  • M. Feitó-Cespón, W. Sarache, F. Piedra-Jimenez and R. Cespón-Castro, Redesign of a sustainable reverse supply chain under uncertainty. A case study. J. Clean. Prod. 151 (2017) 206–217. [Google Scholar]
  • M. Fischetti and M. Monaci, Light Robustness. Springer, Berlin Heidelberg (2009). [Google Scholar]
  • J. Jouzdani, M. Fathian, A. Makui and M. Heydari, Robust design and planning for a multi-mode multi-product supply network: A dairy industry case study. Oper. Res. (2018) 1–30. [Google Scholar]
  • M. Khatami, M. Mahootchi and R.Z. Farahani, Benders’ decomposition for concurrent redesign of forward and closed-loop supply chain network with demand and return uncertainties. Transp. Res. Part E: Logist. Transp. Rev. 79 (2015) 1–21. [Google Scholar]
  • F. Kiya and H. Davoudpour, Stochastic programming approach to re-designing a warehouse network under uncertainty. Transp. Res. Part E: Logist. Transp. Rev. 48 (2012) 919–936. [Google Scholar]
  • W. Klibi, A. Martel and A. Guitouni, The design of robust value-creating supply chain networks: A critical review. Eur. J. Oper. Res. 203 (2010) 283–293. [Google Scholar]
  • Y.J. Lee, T. Baker and V. Jayaraman, Redesigning an integrated forward–reverse logistics system for a third party service provider: an empirical study. Int. J. Prod. Res. 50 (2012) 5615–5634. [Google Scholar]
  • S. Majidi, S. Yaghoubi and A. Jokar, Fuzzy green vehicle routing problem with simultaneous pickup – delivery and time windows. RAIRO: OR 51 (2017) 1151–1176. [CrossRef] [Google Scholar]
  • C.L. Martins, M.T. Melo and M.V. Pato, Redesigning a food bank supply chain network , Part I: Background and mathematical formulation. In: Technical Reports on Logistics of the Saarland Business School No 10 (2016). [Google Scholar]
  • E. Melachrinoudis and H. Min, The dynamic relocation and phase-out of a hybrid, two-echelon plant/warehousing facility: A multiple objective approach. Eur. J. Oper. Res. 123 (2000) 1–15. [Google Scholar]
  • E. Melachrinoudis and H. Min, Redesigning a warehouse network. Eur. J. Oper. Res. 176 (2007) 210–229. [Google Scholar]
  • M.T. Melo, S. Nickel and F. Saldanha-da-Gama, An efficient heuristic approach for a multi-period logistics network redesign problem. Top 22 (2014) 80–108. [Google Scholar]
  • M.T. Melo, S. Nickel and F. Saldanha-Da-Gama, A tabu search heuristic for redesigning a multi-echelon supply chain network over a planning horizon. Int. J. Prod. Econ. 136 (2012) 218–230. [Google Scholar]
  • M.T. Melo, S. Nickel and F.S. Saldanha Da Gama, Dynamic multi-commodity capacitated facility location: A mathematical modeling framework for strategic supply chain planning. Comput. Oper. Res. 33 (2006) 181–208. [Google Scholar]
  • S.M.J. Mirzapour Al-e-hashem, H. Malekly and M.B. Aryanezhad, A multi-objective robust optimization model for multi-product multi-site aggregate production planning in a supply chain under uncertainty. Int. J. Prod. Econ. 134 (2011) 28–42. [Google Scholar]
  • A. Nadizadeh and B. Kafash, Fuzzy capacitated location-routing problem with simultaneous pickup and delivery demands. Transp. Lett. 11 (2019) 1–19. [Google Scholar]
  • J.C. Paz, J.A. Orozco, J.M. Salinas, N.C. Buriticá and J.W. Escobar, Redesign of a supply network by considering stochastic demand. Int. J. Ind. Eng. Comput. 6 (2015) 521–538. [Google Scholar]
  • M. Rabbani, R. Heidari and R. Yazdanparast, A stochastic multi-period industrial hazardous waste location-routing problem: Integrating NSGA-II and Monte Carlo simulation. Eur. J. Oper. Res. 272 (2018) 945–961. [Google Scholar]
  • J. Razmi, A. Zahedi-Anaraki and M. Zakerinia, A bi-objective stochastic optimization model for reliable warehouse network redesign. Math. Comput. Model. 58 (2013) 1804–1813. [Google Scholar]
  • M. Schiffer and G. Walther, Strategic planning of electric logistics fleet networks: A robust location-routing approach. Omega 80 (2018) 31–42. [Google Scholar]
  • A.L. Soyster, Technical note – convex programming with set-inclusive constraints and applications to inexact linear programming. Oper. Res. 21 (1973) 1154–1157. [Google Scholar]
  • D.D. Tönissen and J.J. Arts, Economies of scale in recoverable robust maintenance location routing for rolling stock. Transp. Res. Part B: Methodol. 117 (2018) 360–377. [Google Scholar]
  • S. Zokaee, A. Jabbarzadeh, B. Fahimnia and S.J. Sadjadi, Robust supply chain network design: An optimization model with real world application. Ann. Oper. Res. 257 (2014) 15–44. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.