Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2727 - S2746
DOI https://doi.org/10.1051/ro/2020102
Published online 02 March 2021
  • A. Banerjee, A joint economic-lot-size model for purchaser and vendor. Decis. Sci. 17 (1986) 292–311. [Google Scholar]
  • L. Benkherouf, K. Skouri and I. Konstantaras, Inventory decisions for a finite horizon problem with product substitution options and time varying demand. Appl. Math. Model. 51 (2017) 669–685. [Google Scholar]
  • J. Cai, P.R. Tadikamalla, J. Shang and G. Huang, Optimal inventory decisions under vendor managed inventory: substitution effects and replenishment tactics. Appl. Math. Model. 43 (2017) 611–629. [Google Scholar]
  • X. Chen, Y. Feng, M.F. Keblis and J. Xu, Optimal inventory policy for two substitutable products with customer service objectives. Eur. J. Oper. Res. 246 (2015) 76–85. [Google Scholar]
  • S.K. De, Triangular dense fuzzy lock sets. Soft Comput. 22 (2017) 7243–7254. [Google Scholar]
  • S.K. De, On degree of fuzziness and fuzzy decision making. Cybern. Syst. 51 (2020) 600–614. [Google Scholar]
  • S.K. De and I. Beg, Triangular dense fuzzy sets and new defuzzification methods. J. Intel. Fuzzy Syst. 31 (2016) 469–477. [Google Scholar]
  • S.K. De and G.C. Mahata, Decision of a fuzzy inventory with fuzzy backorder model under cloudy fuzzy demand rate. Int. J. Appl. Comput. Math. 3 (2017) 2593–2609. [Google Scholar]
  • S.K. De and G.C. Mahata, An EPQ model for three-layer supply chain with partial backordering and disruption: triangular dense fuzzy lock set approach. Sādhanā 44 (2019) 177. [Google Scholar]
  • S.K. De and M. Pal, An intelligent decision for a bi-objective inventory problem. Int. J. Syst. Sci.: Oper. Logistics 3 (2016) 49–62. [Google Scholar]
  • S.K. De and S.S. Sana, Fuzzy order quantity inventory model with fuzzy shortage quantity and fuzzy promotional index. Econ. Model. 31 (2013) 351–358. [Google Scholar]
  • S.K. De and S.S. Sana, Multi-criterion multi-attribute decision-making for an EOQ model in a hesitant fuzzy environment. Pac. Sci. Rev. A: Nat. Sci. Eng. 17 (2015) 61–68. [Google Scholar]
  • S.K. De and S.S. Sana, Two-layer supply chain model for cauchy-type stochastic demand under fuzzy environment. Int. J. Intel. Comput. Cybern. 11 (2018) 285–308. [Google Scholar]
  • Z. Drezner, H. Gurnani and B.A. Pasternack, An EOQ model with substitutions between products. J. Oper. Res. Soc. 46 (1995) 887–891. [Google Scholar]
  • S. Ghosh, S. Khanra and K. Chaudhuri, Optimal price and lot size determination for a perishable product under conditions of finite production, partial backordering and lost sale. Appl. Math. Comput. 217 (2011) 6047–6053. [Google Scholar]
  • S.K. Goyal, “A joint economic-lot-size model for purchaser and vendor”: a comment. Decis. Sci. 19 (1988) 236–241. [Google Scholar]
  • S.K. Goyal and Y.P. Gupta, Integrated inventory models: the buyer-vendor coordination. Eur. J. Oper. Res. 41 (1989) 261–269. [Google Scholar]
  • S.K. Goyal, C.K. Huang and K.C. Chen, A simple integrated production policy of an imperfect item for vendor and buyer. Prod. Planning Control 14 (2003) 596–602. [Google Scholar]
  • H. Gurnani and Z. Drezner, Deterministic hierarchical substitution inventory models. J. Oper. Res. Soc. 51 (2000) 129–133. [Google Scholar]
  • J.T. Hsu and L.F. Hsu, An integrated vendor–buyer cooperative inventory model for items with imperfect quality and shortage backordering. Adv. Decis. Sci. 2012 (2012) 679083. [Google Scholar]
  • G. Jamali, S.S. Sana and R. Moghdani, Hybrid improved cuckoo search algorithm and genetic algorithm for solving markov-modulated demand. RAIRO:OR 52 (2018) 473–497. [Google Scholar]
  • S. Karmakar, S.K. De and A. Goswami, A pollution sensitive dense fuzzy economic production quantity model with cycle time dependent production rate. J. Cleaner Prod. 154 (2017) 139–150. [Google Scholar]
  • R.S. Kumar, S. De and A. Goswami, Fuzzy EOQ models with ramp type demand rate, partial backlogging and time dependent deterioration rate. Int. J. Math. Oper. Res. 4 (2012) 473–502. [Google Scholar]
  • S. Maity, S.K. De and S.P. Mondal, A study of a backorder EOQ model for cloud-type intuitionistic dense fuzzy demand rate. Int. J. Fuzzy Syst. 22 (2020) 201–211. [Google Scholar]
  • R. Mcgillivray and E. Silver, Some concepts for inventory control under substitutable demand. INFOR: Info. Syst. Oper. Res. 16 (1978) 47–63. [Google Scholar]
  • V.K. Mishra, Optimal ordering quantities for substitutable deteriorating items under joint replenishment with cost of substitution. J. Ind. Eng. Int. 13 (2017) 381–391. [Google Scholar]
  • R. Moghdani, S.S. Sana and H. Shahbandarzadeh, Multi-item fuzzy economic production quantity model with multiple deliveries. Soft Comput. 24 (2020) 10363–10387. [Google Scholar]
  • A. Mukhopadhyay and A. Goswami, An inventory model with shortages for imperfect items using substitution of two products. Int. J. Oper. Res. 30 (2017) 193–219. [Google Scholar]
  • B. Pal, S.S. Sana and K. Chaudhuri, A three layer multi-item production–inventory model for multiple suppliers and retailers. Econ. Model. 29 (2012) 2704–2710. [Google Scholar]
  • M. Parlar and S. Goyal, Optimal ordering decisions for two substitutable products with stochastic demands. Opsearch 21 (1984) 1–15. [Google Scholar]
  • B.A. Pasternack and Z. Drezner, Optimal inventory policies for substitutable commodities with stochastic demand. Nav. Res. Logistics (NRL) 38 (1991) 221–240. [Google Scholar]
  • M.K. Salameh and M.Y. Jaber, Economic production quantity model for items with imperfect quality. Int. J. Prod. Econ. 64 (2000) 59–64. [Google Scholar]
  • S.S. Sana, A production-inventory model of imperfect quality products in a three-layer supply chain. Decis. Supp. Syst. 50 (2011) 539–547. [Google Scholar]
  • S.S. Sana, Optimal contract strategies for two stage supply chain. Econ. Model. 30 (2013) 253–260. [Google Scholar]
  • S.S. Sana, J.A. Chedid and K.S. Navarro, A three layer supply chain model with multiple suppliers, manufacturers and retailers for multiple items. Appl. Math. Comput. 229 (2014) 139–150. [Google Scholar]
  • B. Sarkar, Supply chain coordination with variable backorder, inspections, and discount policy for fixed lifetime products. Math. Prob. Eng. 2016 (2016) 6318737. [Google Scholar]
  • B. Sarkar and I. Moon, An EPQ model with inflation in an imperfect production system. Appl. Math. Comput. 217 (2011) 6159–6167. [Google Scholar]
  • S. Sinha, N.M. Modak and S.S. Sana, An entropic order quantity inventory model for quality assessment considering price sensitive demand. Opsearch 57 (2020) 88–103. [Google Scholar]
  • H.N. Soni and K.A. Patel, Optimal strategy for an integrated inventory system involving variable production and defective items under retailer partial trade credit policy. Decis. Supp. Syst. 54 (2012) 235–247. [Google Scholar]
  • M.A. Takami, R. Sheikh and S.S. Sana, A hesitant fuzzy set theory based approach for project portfolio selection with interactions under uncertainty. J. Inf. Sci. Eng. 34 (2018) 65–79. [Google Scholar]
  • C.S. Tang and R. Yin, Joint ordering and pricing strategies for managing substitutable products. Prod. Oper. Manage. 16 (2007) 138–153. [Google Scholar]
  • S. Transchel, Inventory management under price-based and stockout-based substitution. Eur. J. Oper. Res. 262 (2017) 996–1008. [Google Scholar]
  • R. Uthayakumar and M. Palanivel, An inventory model for defective items with trade credit and inflation. Prod. Manuf. Res. 2 (2014) 355–379. [Google Scholar]
  • H.M. Wee, J. Yu and M.C. Chen, Optimal inventory model for items with imperfect quality and shortage backordering. Omega 35 (2007) 7–11. [Google Scholar]
  • L. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–353. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.