Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S21 - S49
Published online 09 February 2021
  • P.J. Agrell and A. Hatami-Marbini, Frontier-based performance analysis models for supply chain management: State of the art and research directions. Comput. Ind. Eng. 66 (2013) 567–583. [Google Scholar]
  • N.K. Avkiran and A. McCrystal, Sensitivity analysis of network DEA: NSBM versus NRAM. Appl. Math. Comput. 218 (2012) 11226–11239. [Google Scholar]
  • M. Azadi, M. Jafarian, R. Farzipoor Saen and S.M. Mirhedayatian, A new fuzzy DEA model for evaluation of efficiency and effectiveness of suppliers in sustainable supply chain management context. Comput. Oper. Res. 54 (2015) 274–285. [Google Scholar]
  • T. Badiezadeh, R. Farzipoor Saen and T. Samavati, Assessing sustainability of supply chains by double frontier network DEA: A big data approach. Comput. Oper. Res. 98 (2018) 284–290. [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • A.P. Barbosa-Póvoa, Sustainable supply chains: Key challenges. Comput. Aided Chem. Eng. 27 (2009) 127–132. [Google Scholar]
  • E. Boudaghi and R.F. Saen, Developing a novel model of data envelopment analysis–discriminant analysis for predicting group membership of suppliers in sustainable supply chain. Comput. Oper. Res. 89 (2018) 348–359. [Google Scholar]
  • R. Burritt and S. Schaltegger, Accounting towards sustainability in production and supply chains. Br. Acc. Rev. 46 (2014) 327–343. [Google Scholar]
  • D. Carlsson, S. D’Amours, A. Martel and M. Rönnqvist, Supply chain planning models in the pulp and paper industry. INFOR: Inf. Syst. Oper. Res. 47 (2009) 167–183. [Google Scholar]
  • C.R. Carter and D.S. Rogers, A framework of sustainable supply chain management: Moving toward new theory. Int. J. Phys. Distrib. Logist. Manag. 38 (2008) 360–387. [Google Scholar]
  • A. Charnes, W. Cooper, B. Golany, R. Halek, G. Klopp, E. Schmitz and D. Thomas, Two Phase Data Envelopment Analysis Approaches to Policy Evaluation and Management of Army Recruiting Activities: Tradeoffs Between Joint Services and Army Advertising: Center for Cybernetic Studies. University of Texas-Austin, Austin, Texas, USA (1986). [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • C.M. Chen, A network-DEA model with new efficiency measures to incorporate the dynamic effect in production networks. Eur. J. Oper. Res. 194 (2009) 687–699. [Google Scholar]
  • Y. Chen, W.D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
  • Y. Chen, W.D. Cook, C. Kao and J. Zhu, Network DEA pitfalls: Divisional efficiency and frontier projection. In: Data Envelopment Analysis. Springer, Boston, MA (2014) 31–54. [Google Scholar]
  • K. Chen and J. Zhu, Second order cone programming approach to two-stage network data envelopment analysis. Eur. J. Oper. Res. 262 (2017) 231–238. [Google Scholar]
  • C. Chen, J. Zhu, J.Y. Yu and H. Noori, A new methodology for evaluating sustainable product design performance with two-stage network data envelopment analysis. Eur. J. Oper. Res. 221 (2012) 348–359. [Google Scholar]
  • W.D. Cook, K. Tone and J. Zhu, Data envelopment analysis: Prior to choosing a model. Omega 44 (2014) 1–4. [Google Scholar]
  • W.W. Cooper, H. Deng, B. Gu, S. Li and R.M. Thrall, Using DEA to improve the management of congestion in Chinese industries (1981–1997), Socio-Econ. Plan. Sci. 35 (2001) 227–242. [Google Scholar]
  • W.W. Cooper, K.S. Park and J.T. Pastor, RAM: A range adjusted measure of inefficiency for use with additive models, and relations to other models and measures in DEA. J. Prod. Anal. 11 (1999) 5–42. [Google Scholar]
  • W.W. Cooper, L.M. Seiford, K. Tone, Data Envelopment Analysis: A Comprehensive Text with Models, Application, References and DEA-Solver Software. Kluwer Academic publishers (2002). [Google Scholar]
  • D.K. Despotis, G. Koronakos and D. Sotiros, Composition versus decomposition in two-stage network DEA: A reverse approach. J. Prod. Anal. 45 (2016) 71–87. [CrossRef] [Google Scholar]
  • T. Dyllick and K. Hockerts, Beyond the business case for corporate sustainability. Bus. Strat. Environ. 11 (2002) 130–141. [Google Scholar]
  • R. Fäare and S. Grosskopf, Network DEA. Socio-Econ. Plan. Sci. 34 (2000) 35–49. [CrossRef] [Google Scholar]
  • R. Fäare and S. Grosskopf, Modeling undesirable factors in efficiency evaluation: Comment. Eur. J. Oper. Res. 157 (2004) 242–245. [Google Scholar]
  • R. Farzipoor Saen, A decision model for selecting technology suppliers in the presence of nondiscretionary factors. Appl. Math. Comput. 181 (2006) 1609–1615. [Google Scholar]
  • R. Farzipoor Saen, Developing a new data envelopment analysis methodology for supplier selection in the presence of both undesirable outputs and imprecise data. Int. J. Adv. Manuf. Technol. 51 (2010) 1243–1250. [Google Scholar]
  • A. Fathi and R. Farzipoor Saen, A novel bidirectional network data envelopment analysis model for evaluating sustainability of distributive supply chains of transport companies. J. Clean. Prod. 184 (2018) 696–708. [Google Scholar]
  • G. Gosalbez, A. Martin and L. Stamford, Enhanced data envelopment analysis for sustainability assessment: A novel methodology and application to electricity technologies. Comput. Chem. Eng. 90 (2016) 188–200. [Google Scholar]
  • I.E. Grossmann, Challenges in the new millennium: Product discovery and design, enterprise and supply chain optimization, global life cycle assessment. Comput. Chem. Eng. 29 (2004) 29–39. [Google Scholar]
  • A. Hassanzadeh, S. Yousefi, R. Farzipoor Saen and S.S.S. Hosseininia, How to assess sustainability of countries via inverse data envelopment analysis? Clean Technol. Environ. Policy 20 (2018) 29–40. [Google Scholar]
  • C.W. Hsu and A.H. Hu, Green supply chain management in the electronic industry. Int. J. Environ. Sci. Technol. 5 (2008) 205–216. [Google Scholar]
  • M. Izadikhah and R. Farzipoor Saen, Evaluating sustainability of supply chains by two-stage range directional measure in the presence of negative data, Transp. Res. Part D: Transp. Environ. 49 (2016) 110–126. [Google Scholar]
  • M. Izadikhah and R. Farzipoor Saen, Assessing sustainability of supply chains by chance-constrained two-stage DEA model in the presence of undesirable factors. Comput. Oper. Res. 100 (2018) 343–367. [Google Scholar]
  • J. Jassbi, R. Farzipoor Saen, F. Hosseinzadeh Lotfi and S.S. Hosseininia, A hybrid decision making system using DEA and fuzzy models for supplier selection in the presence of multiple decision makers. Int. J. Ind. Math. 3 (2011) 193–212. [Google Scholar]
  • S. Jradi, T.B. Chameeva, B. Delhomme and A. Jaegler, Tracking carbon footprint in French vineyards: A DEA performance assessment. J. Clean. Prod. 192 (2018) 43–54. [Google Scholar]
  • C. Kao, Network data envelopment analysis: A review. Eur. J. Oper. Res. 239 (2014) 1–16. [Google Scholar]
  • C. Kao and S.N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [Google Scholar]
  • D.J. Ketchen and G.T.M. Hult, Bridging organization theory and supply chain management: The case of best value supply chains. J. Oper. Manag. 25 (2007) 573–580. [CrossRef] [Google Scholar]
  • G. Koronakos, D. Sotiros and D.K. Despotis, Reformulation of network data envelopment analysis models using a common modelling framework. Eur. J. Oper. Res. 278 (2019) 472–480. [Google Scholar]
  • G. Lamberton, Sustainability accounting. A brief history and conceptual framework. Acc. Forum 29 (2005) 7–26. [Google Scholar]
  • M. Mahdiloo, M. Tavana, R. Farzipoor Saen and A. Noorizadeh, A game theoretic approach to modeling undesirable outputs and efficiency decomposition in data envelopment analysis. Appl. Math. Comput. 244 (2014) 479–492. [Google Scholar]
  • Y. Maruyama, Range adjusted measure network DEA model. AIP Conf. Proc. 1168 (2009) 949–952. [Google Scholar]
  • S.M. Mirhedayatian, M. Azadi and R. Farzipoor Saen, A novel network data envelopment analysis model for evaluating green supply chain management. Int. J. Prod. Econ. 147 (2014) 544–554. [Google Scholar]
  • B. Mota, M.I. Gomes and A.P. Barbosa-Póvoa, Supply chain design towards sustainability: Accounting for growth and jobs. Comput. Aided Chem. Eng. 34 (2014) 789–794. [Google Scholar]
  • P.R. Murphy and R.F. Poist, Green perspectives and practices: a “comparative logistics” study. Supply Chain Manag.: Int. J. 8 (2003) 122–131. [Google Scholar]
  • J.Q.F. Neto, J.M. Bloemhof-Ruwaard, J.A. van Nunen and E. van Heck, Designing and evaluating sustainable logistics networks. Int. J. Prod. Econ. 111 (2008) 195–208. [Google Scholar]
  • F. Perrini and A. Tencati, Sustainability and stakeholder management: The need for new corporate performance evaluation and reporting systems. Bus. Strat. Environ. 15 (2006) 296–308. [Google Scholar]
  • A. Philpott and G. Everett, Supply chain optimisation in the paper industry. Ann. Oper. Res. 108 (2001) 225–237. [Google Scholar]
  • J.E. Post, L.E. Preston and S. Sachs, Managing the extended enterprise: The new stakeholder view. Calif. Manag. Rev. 45 (2002) 6–28. [Google Scholar]
  • A. Qorri, Z. Mujkić and A. Kraslawski, A conceptual framework for measuring sustainability performance of supply chains. J. Clean. Prod. 189 (2018) 570–584. [Google Scholar]
  • K. Rashidi and R. Farzipoor Saen, Measuring eco-efficiency based on green indicators and potentials in energy saving and undesirable output abatement. Energy Econ. 50 (2015) 18–26. [Google Scholar]
  • H. Scheel, Undesirable outputs in efficiency valuations. Eur. J. Oper. Res. 132 (2001) 400–410. [Google Scholar]
  • L.M. Seiford and J. Zhu, Profitability and marketability of the top 55 US commercial banks. Manag. Sci. 45 (1999) 1270–1288. [CrossRef] [Google Scholar]
  • L.M. Seiford and J. Zhu, Modeling undesirable factors in efficiency evaluation. Eur. J. Oper. Res. 142 (2002) 16–20. [Google Scholar]
  • S. Seuring and M. Müller, Core issues in sustainable supply chain management–a Delphi study. Bus. Strat. Environ. 17 (2008) 455–466. [Google Scholar]
  • V. Shokri Kahi, S. Yousefi, H. Shabanpour and R. Farzipoor Saen, How to evaluate sustainability of supply chains? A dynamic network DEA approach. Ind. Manag. Data Syst. 117 (2017) 1866–1889. [Google Scholar]
  • S. Soheilirad, K. Govindan, A. Mardani, E.K. Zavadskas, M. Nilashi and N. Zakuan, Application of data envelopment analysis models in supply chain management: A systematic review and meta-analysis. Ann. Oper. Res. 271 (2018) 915–969. [Google Scholar]
  • L.J. Spence and L. Rinaldi, Governmentality in accounting and accountability: A case study of embedding sustainability in a supply chain. Acc. Organ. Soc. 39 (2014) 433–452. [Google Scholar]
  • T. Sueyoshi and M. Goto, Should the US clean air act include CO2 emission control?: Examination by data envelopment analysis. Energy Policy 38 (2010) 5902–5911. [Google Scholar]
  • T. Sueyoshi and M. Goto, Methodological comparison between two unified (operational and environmental) efficiency measurements for environmental assessment. Eur. J. Oper. Res. 210 (2011) 684–693. [Google Scholar]
  • T. Sueyoshi and M. Goto, Data envelopment analysis for environmental assessment: Comparison between public and private ownership in petroleum industry. Eur. J. Oper. Res. 216 (2012) 668–678. [Google Scholar]
  • T. Sueyoshi and M. Goto, Undesirable congestion under natural disposability and desirable congestion under managerial disposability in US electric power industry measured by DEA environmental assessment. Energy Econ. 55 (2016) 173–188. [Google Scholar]
  • T. Sueyoshi and D. Wang, Sustainability development for supply chain management in US petroleum industry by DEA environmental assessment. Energy Econ. 46 (2014) 360–374. [Google Scholar]
  • A. Tajbakhsh and E. Hassini, A data envelopment analysis approach to evaluate sustainability in supply chain networks. J. Clean. Prod. 105 (2015) 74–85. [Google Scholar]
  • A. Tajbakhsh and E. Hassini, Evaluating sustainability performance in fossil-fuel power plants using a two-stage data envelopment analysis. Energy Econ. 74 (2018) 154–178. [Google Scholar]
  • M. Tavana, H. Shabanpour, S. Yousefi and R. Farzipoor Saen, A hybrid goal programming and dynamic data envelopment analysis framework for sustainable supplier evaluation. Neural Comput. Appl. 28 (2017) 3683–3696. [Google Scholar]
  • M. Tavassoli and R. Farzipoor Saen, Predicting group membership of sustainable suppliers via data envelopment analysis and discriminant analysis. Sustain. Prod. Consum. 18 (2019) 41–52. [Google Scholar]
  • M. Tavassoli, R. Farzipoor Saen and G.R. Faramarzi, Developing network data envelopment analysis model for supply chain performance measurement in the presence of zero data. Expert Syst. 32 (2015) 381–391. [Google Scholar]
  • S. Yousefi, R. Farzipoor Saen and S.S. Seyedi Hosseininia, Developing an inverse range directional measure model to deal with positive and negative values. Manag. Decis. 57 (2019) 2520–2540. [Google Scholar]
  • H. Zhou, Y. Yang, Y. Chen and J. Zhu, Data envelopment analysis application in sustainability: The origins, development and future directions. Eur. J. Oper. Res. 264 (2018) 1–16. [Google Scholar]
  • K.H. Zoroufchi, M. Azadi and R. Farzipoor Saen, Developing a new cross-efficiency model with undesirable outputs for supplier selection. Int. J. Ind. Syst. Eng. 12 (2012) 470–484. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.