Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S625 - S646
DOI https://doi.org/10.1051/ro/2019063
Published online 02 March 2021
  • M.A. Al-Fawzan and M. Haouari, A bi-objective model for robust resource-constrained project scheduling. Int. J. Prod. Econ. 96 (2005) 175–187. [Google Scholar]
  • K. Braekers, A. Caris and G.K. Janssens, Bi-objective optimization of drayage operations in the service area of intermodal terminals. Transp. Res. Part E-logist. Transp. Rev. 65 (2014) 50–69. [Google Scholar]
  • L. Coslovich, R. Pesenti and W. Ukovich, Minimizing fleet operating costs for a container transportation company. Eur. J. Oper. Res. 171 (2006) 776–786. [Google Scholar]
  • M. Dorigo, V. Maniezzo and A. Colorni, Ant system: Optimization by a colony of cooperating agents. Syst. Man Cybern. 26 (1996) 29–41. [Google Scholar]
  • A. Ghezelsoflu, M.D. Francesco, A. Frangioni and P. Zuddas, A set-covering formulation for a drayage problem with single and double container loads. J. Ind. Eng. Int. 14 (2018) 665–676. [Google Scholar]
  • C.E. Gounaris, W. Wiesemann and C.A. Floudas, The robust capacitated vehicle routing problem under demand uncertainty. Oper. Res. 61 (2013) 677–693. [Google Scholar]
  • J. Han, C. Lee and S. Park, A robust scenario approach for the vehicle routing problem with uncertain travel times. Transp. Sci. 48 (2014) 373–390. [Google Scholar]
  • X. Han, Z. Lu and L. Xi, A proactive approach for simultaneous berth and quay crane scheduling problem with stochastic arrival and handling time. Eur. J. Oper. Res. 207 (2010) 1327–1340. [Google Scholar]
  • W. Herroelen and R. Leus, Project scheduling under uncertainty: Survey and research potentials. Eur. J. Oper. Res. 165 (2005) 289–306. [Google Scholar]
  • A. Imai, E. Nishimura and J.R. Current, A lagrangian relaxation-based heuristic for the vehicle routing with full container load. Eur. J. Oper. Res. 176 (2007) 87–105. [Google Scholar]
  • H. Jula, M.M. Dessouky, P.A. Ioannou and A. Chassiakos, Container movement by trucks in metropolitan networks: Modeling and optimization. Transp. Res. Part E-logist. Transp. Rev. 41 (2005) 235–259. [Google Scholar]
  • O. Lambrechts, E. Demeulemeester and W. Herroelen, Proactive and reactive strategies for resource-constrained project scheduling with uncertain resource availabilities. J. Sched. 11 (2008) 121–136. [Google Scholar]
  • C. Lee, K. Lee and S. Park, Robust vehicle routing problem with deadlines and travel time/demand uncertainty. J. Oper. Res. Soc. 63 (2012) 1294–1306. [Google Scholar]
  • C. Liu, C. Zhang and L. Zheng, A bi-objective model for robust yard allocation scheduling for outbound containers. Eng. Optim. 49 (2017) 113–135. [Google Scholar]
  • J.M. Mulvey, R.J. Vanderbei and S.A. Zenios, Robust optimization of large-scale systems. Oper. Res. 43 (1995) 264–281. [Google Scholar]
  • S. Shiri and N. Huynh, Optimization of drayage operations with time-window constraints. Int. J. Prod. Econ. 176 (2016) 7–20. [Google Scholar]
  • Y. Song, Z. Jiantong, L. Zhe and Y. Chunming, An exact algorithm for the container drayage problem under a separation mode. Transp. Res. Part E-logist. Transp. Rev. 106 (2017) 231–254. [Google Scholar]
  • T. Stutzle and H.H. Hoos, Max-min ant system. Future Gener. Comput. Syst. 16 (2000) 889–914. [Google Scholar]
  • I. Sungur, F. Ordonez and M.M. Dessouky, A robust optimization approach for the capacitated vehicle routing problem with demand uncertainty. Iie Trans. 40 (2008) 509–523. [Google Scholar]
  • D. Tjokroamidjojo, E. Kutanoglu and G.D. Taylor, Quantifying the value of advance load information in truckload trucking. Transp. Res. Part E-logist. Transp. Rev. 42 340–357. [Google Scholar]
  • S. Wang and Q. Meng, Robust schedule design for liner shipping services. Transp. Res. Part E-logist. Transp. Rev. 48 (2012) 1093–1106. [Google Scholar]
  • X. Wang and A.C. Regan, Local truckload pickup and delivery with hard time window constraints. Transp. Res. Part B- methodol. 36 (2002) 97–112. [Google Scholar]
  • Z. Xue, C. Zhang, W.H. Lin, L. Miao and P. Yang, A tabu search heuristic for the local container drayage problem under a new operation mode. Transp. Res. Part E-logist. Transp. Rev. 62 136–150. [Google Scholar]
  • Z. Xue, C. Zhang, P. Yang and L. Miao, A combinatorial benders’ cuts algorithm for the local container drayage problem. Math. Probl. Eng. 2015 (2015) 1–7. [Google Scholar]
  • R. Zhang, W.Y. Yun and H. Kopfer, Heuristic-based truck scheduling for inland container transportation. OR Spectr. 32 (2010) 787–808. [Google Scholar]
  • R. Zhang, W.Y. Yun and K.I. Moon, Modeling and optimization of a container drayage problem with resource constraints. Int. J. Prod. Econ. 133 (2011) 351–359. [Google Scholar]
  • L. Zhen and D.F. Chang, A bi-objective model for robust berth allocation scheduling. Comput. Ind. Eng. 63 (2012) 262–273. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.