Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1767 - S1787
DOI https://doi.org/10.1051/ro/2020033
Published online 02 March 2021
  • A. Abbaszadeh Sori, A. Ebrahimnejad and H. Motameni, Elite artificial bees’ colony algorithm to solve robot’s fuzzy constrained routing problem. Comput. Intell. 36 (2019) 659–681. [Google Scholar]
  • A. Abbaszadeh Sori, A. Ebrahimnejad and H. Motameni, The fuzzy inference approach to solve multi-objective constrained shortest path problem. J. Intell. Fuzzy Syst. 38 (4) (2019) 1–10. [Google Scholar]
  • E. Ahmadi, G.A. Süer and F. Al-Ogaili, Solving stochastic shortest distance path problem by using genetic algorithms. Proc. Comput. Sci. 140 (2018) 79–86. [Google Scholar]
  • R.K. Ahuja, T.L. Magnanti and J.B. Orlin, Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Englewood Cliffs, NJ (1993). [Google Scholar]
  • C. Alexopoulos, State space partitioning methods for stochastic shortest path problems. Networks 30 (1997) 9–21. [Google Scholar]
  • J.L. Bander and C.C. White, A heuristic search approach for a nonstationary stochastic shortest path problem with terminal cost. Trans. Sci. 36 (2002) 218–230. [Google Scholar]
  • H. Beigy and M.R. Meybodi, Utilizing distributed learning automata to solve stochastic shortest path problems. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 14 (2006) 591–616. [Google Scholar]
  • B. Bosek, D. Leniowski, P. Sankowski and A. Zych-Pawlewicz, Shortest augmenting paths for online matchings on trees. Theory Comput. Syst. 62 (2018) 337–348. [Google Scholar]
  • S. Broumi, A. Dey, M. Talea, A. Bakali, F. Smarandache, D. Nagarajan, M. Lathamaheswari and R. Kumar, Shortest path problem using Bellman algorithm under neutrosophic environment. Complex Intell. Syst. 5 (2019) 409–416. [Google Scholar]
  • R.K. Cheung, Iterative methods for dynamic stochastic shortest path problems. Nav. Res. Logist. 45 (1998) 769–789. [Google Scholar]
  • T.N. Chuang and J.Y. Kung, The fuzzy shortest path length and the corresponding shortest path in a network, Comput. Oper. Res. 32 (2005) 1409–1428. [Google Scholar]
  • T.N. Chuang and J.Y. Kung, A new algorithm for the discrete fuzzy shortest path problem in a network. Appl. Math. Comput. 174 (2006) 660–668. [Google Scholar]
  • J.S. Croucher, A note on the stochastic shortest-route problem. Nav. Res. Logist. 25 (1978) 729–732. [Google Scholar]
  • Y. Deng, Y. Chen, Y. Zhang and S. Mahadevan, Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Appl. Soft Comput. 12 (2012) 1231–1237. [Google Scholar]
  • A. Dey, R. Pradhan, A. Pal and T. Pal, A genetic algorithm for solving fuzzy shortest path problems with interval type-2 fuzzy arc lengths. Malaysian J. Comput. Sci. 31 (2018) 255–270. [Google Scholar]
  • Y. Dou, L. Zhu and H.S. Wang, Solving the fuzzy shortest path problem using multi-criteria decision method based on vague similarity measure. Appl. Soft Comput. 12 (2012) 1621–1631. [Google Scholar]
  • D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Applications. Academic Press, New York, NY (1980). [Google Scholar]
  • A. Ebrahimnejad, Z. Karimnejad and H. Alrezaamiri, Particle swarm optimization algorithm for solving shortest path problems with mixed fuzzy arc weights. Int. J. Appl. Decis. Sci. 8 (2015) 203–222. [Google Scholar]
  • A. Ebrahimnejad, M. Tavana and H. Alrezaamiri, A novel artificial bee colony algorithm for shortest path problems with fuzzy arc weights. Measurement 93 (2016) 48–56. [Google Scholar]
  • M. Enayattabar, A. Ebrahimnejad and H. Motameni, Dijkstra algorithm for shortest path problem under interval-valued Pythagorean fuzzy environment. Complex Intell. Syst. 5 (2019) 93–10. [Google Scholar]
  • M. Enayattabar, A. Ebrahimnejad, H. Motameni and H. Garg, A novel approach for solving all-pairs shortest path problem in an interval-valued fuzzy network. J. Intell. Fuzzy Syst. 37 (2019) 6865–6877. [Google Scholar]
  • M. Eshaghnezhad, F. Rahbarnia, S. Effati and A. Mansoori, An artificial neural network model to solve the fuzzy shortest path problem. Neural Proc. Lett. 50 (2019) 1527–1548. [Google Scholar]
  • Y. Gao, Shortest path problem with uncertain arc lengths. Comput. Math. App. 62 (2011) 2591–2600. [Google Scholar]
  • M. Ghiyasvand, A new approach for solving the minimum cost flow problem with interval and fuzzy data. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 19 (2011) 71–88. [Google Scholar]
  • M. Ghiyasvand, Solving the minimum flow problem with interval bounds and flows. Sadhana 37 (2012) 665–674. [Google Scholar]
  • M. Guillot and G. Stauffer, The stochastic shortest path problem: a polyhedral combinatorics perspective. Eur. J. Oper. Res. 285 (1) (2018) 148–158. [Google Scholar]
  • Y. Guo, S. Li, W. Jiang, B. Zhang and Y. Ma, Learning automata-based algorithms for solving the stochastic shortest path routing problems in 5G wireless communication. Phys. Commun. 25 (2017) 376–385. [Google Scholar]
  • T. Hagerup, Simpler computation of single-source shortest paths in linear average time. Theory Comput. Syst. 39 (2006) 113–120. [Google Scholar]
  • S.M. Hashemi, M. Ghatee and E. Nasrabadi, Combinatorial algorithms for the minimum interval cost flow problem. Appl. Math. Comput. 175 (2006) 1200–1216. [Google Scholar]
  • R. Hassanzadeh, I. Mahdavi, N. Mahdavi-Amiri and A. Tajdin, A genetic algorithm for solving fuzzy shortest path problems with mixed fuzzy arc lengths. Math. Comput. Model. 57 (2013) 84–99. [Google Scholar]
  • F. Hernandes, M.T. Lamata, J.L. Verdegay and A. Yamakami, The shortest path problem on networks with fuzzy parameters. Fuzzy Sets Syst. 158 (2007) 1561–1570. [Google Scholar]
  • C. Horoba, Ant colony optimization for stochastic shortest path problems. In: Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation. Association for Computing Machinery, New York, NY (2010) 1465–1472. [Google Scholar]
  • K.R. Hutson and D.R. Shier, Extended dominance and a stochastic shortest path problem. Comput. Oper. Res. 36 (2009) 584–596. [Google Scholar]
  • X. Ji, Models and algorithm for shortest path problem. Appl. Math. Comput. 170 (2005) 503–514. [Google Scholar]
  • X. Ji, K. Iwamura and Z. Shao, New models for shortest path problem with problem with fuzzy arc lengths. Appl. Math. Model. 31 (2007) 259–269. [Google Scholar]
  • J. Kamburowski, A note on the stochastic shortest route problem. Oper. Res. 33 (1985) 696–698. [Google Scholar]
  • C.M. Klein, Fuzzy shortest paths. Fuzzy Sets Syst. 39 (1991) 27–41. [Google Scholar]
  • A. Kumar and M. Kaur, A new algorithm, for solving shortest path problem on a network with imprecise edge weight. App. Appl. Math. Int. J. 6 (2011) 602–619. [Google Scholar]
  • Y. Li, M. Gen and K. Ida, Solving fuzzy shortest path problems by neural networks. Comput. Ind. Eng. 31 (1996) 861–865. [Google Scholar]
  • K.C. Lin and M.S. Chern, The fuzzy shortest path problem and its most vital arcs. Fuzzy Sets Syst. 58 (1993) 343–353. [Google Scholar]
  • I. Mahdavi, R. Nourifar, A. Heidarzade and N. Mahdavi-Amiri, A dynamic programming approach for finding shortest chains in fuzzy network. Appl. Soft Comput. 9 (2009) 503–511. [Google Scholar]
  • P. Mani, S. Broumi and K. Muthusamy, A network shortest path algorithm via hesitancy fuzzy digraph. J. New Theory 27 (2019) 52–62. [Google Scholar]
  • H. Motameni and A. Ebrahimnejad, Constraint shortest path problem in a network with intuitionistic fuzzy arc weights, edited by J. Medina, M. Ojeda-Aciego, J. Verdegay, I. Perfilieva, B. Bouchon-Meunier and R. Yager. In: Vol. 855 of Communications in Computer and Information Science. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications. IPMU 2018. Springer, New York, NY (2018). [Google Scholar]
  • I. Murthy and S. Sarkar, A relaxation-based pruning technique for a class of stochastic shortest path problems. Trans. Sci. 30 (1996) 220–236. [Google Scholar]
  • I. Murthy and S. Sarkar, Stochastic shortest path problems with piecewise-linear concave utility functions. Manage. Sci. 44 (1998) 125–136. [Google Scholar]
  • S.M.A. Nayeem and M. Pal, Shortest path problem on a network with imprecise edge weight. Fuzzy Optim. Decis. Making 4 (2005) 293–312. [Google Scholar]
  • E. Nikolova, J.A. Kelner, M. Brand and M. Mitzenmacher, Stochastic shortest paths via quasi-convex maximization. In: Vol. 4168 of Lecture Notes in Computer Science. Algorithms–ESA 2006. Springer, New York, NY (2006) 552–563. [Google Scholar]
  • Y. Ohtsubo, Stochastic shortest path problems with associative accumulative criteria. Appl. Math. Comput. 198 (2008) 198–208. [Google Scholar]
  • S. Okada, Fuzzy shortest path problems incorporating interactivity among paths. Fuzzy Sets Syst. 142 (2004) 335–357. [Google Scholar]
  • S. Okada and M. Gen, Order relation between intervals and its application to shortest path problem. Comput. Ind. Eng. 25 (1993) 147–150. [Google Scholar]
  • S. Okada and T. Soper, A shortest path problem on a network with fuzzy arc lengths. Fuzzy Sets Syst. 109 (2000) 129–140. [Google Scholar]
  • S.K. Peer and D.K. Sharma, Finding the shortest path in stochastic networks. Comput. Math. App. 53 (2007) 729–740. [Google Scholar]
  • G.H. Polychronopoulos and J.N. Tsitliklis, Stochastic shortest path problem with recourse. Networks 27 (1996) 133–143. [Google Scholar]
  • C.M. Ramos and F. Sagols, The minimum cost flow problem with interval and fuzzy arc costs. Morfismos 5 (2011) 57–68. [Google Scholar]
  • A. Sengupta and T.K. Pal, Theory and methodology on comparing interval numbers. Eur. J. Oper. Res. 127 (2000) 28–43. [Google Scholar]
  • A. Sengupta and T.K. Pal, Solving the shortest path problem with interval arcs. Fuzzy Optim. Decis. Making 5 (2006) 71–89. [Google Scholar]
  • D. Sever, L. Zhao, N. Dellaert, E. Demir, T.V. Woensel and T.D. Kok, The dynamic shortest path problem with time-dependent stochastic disruptions. Trans. Res. Part C: Emerg. Technol. 92 (2018) 42–57. [Google Scholar]
  • C.E. Sigal, A.A.B. Pritsker and J.J. Solberg, The stochastic shortest route problem. Oper. Res. 28 (1980) 1122–1129. [Google Scholar]
  • A. Tajdin, I. Mahdavi, N. Mahdavi-Amiri and B. Sadeghpour-Gildeh, Computing a fuzzy shortest path in a network with mixed fuzzy lengths using -cut. Comput. Math. App. 60 (2010) 989–1002. [Google Scholar]
  • H. Yu and D. Bertsekas, On boundedness of Q-learning iterates for stochastic shortest path problems. Math. Oper. Res. 38 (2013) 209–227. [Google Scholar]
  • Z. Zero, C. Bersani, M. Paolucci and R. Sacile, Two new approaches for the bi-objective shortest path with a fuzzy objective applied to HAZMAT transportation. J. Hazard. Mater. 375 (2019) 96–106. [Google Scholar]
  • J. Zhang, J. Zhuang and B. Behlendorf, Stochastic shortest path network interdiction with a case study of Arizona–Mexico border. Reliab. Eng. Syst. Saf. 179 (2018) 62–73. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.