Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S1395 - S1410
Published online 02 March 2021
  • P.K. Anh and T.N. Hai, Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer. Algorithms 76 (2017) 67–91. [Google Scholar]
  • P.N. Anh, T.N. Hai and P.M. Tuan, On ergodic algorithms for equilibrium problems. J. Global Optim. 64 (2016) 179–195. [Google Scholar]
  • H.H. Bauschke and P.H. Combettes, Convex Analysis and Monotone Operator in Hilbert Spaces. Springer, New York, NY (2010). [Google Scholar]
  • G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Existence and solution methods for equilibria. Eur. J. Oper. Res. 227 (2013) 1–11. [Google Scholar]
  • G. Bigi, M. Castellani, M. Pappalardo and M. Passacantando, Nonlinear Programming Techniques for Equilibria. Springer, New York, NY (2018). [Google Scholar]
  • E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems. Math. Stud. 63 (1994) 123–145. [Google Scholar]
  • P.M. Duc, L.D. Muu and N.V. Quy, Solution-existence and algorithms with their convergence rate for strongly pseudomonotone equilibrium problems. Pac. J. Optim. 12 (2016) 833–845. [Google Scholar]
  • F. Facchinei and J.-S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer New York, NY (2003). [Google Scholar]
  • K. Fan, A minimax inequality and applications, edited by O. Shisha. In: Inequalities III. Academic Press, New York, NY (1972) 103–113. [Google Scholar]
  • T.N. Hai and N.T. Vinh, Two new splitting algorithms for equilibrium problems. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 111 (2017) 1051–1069. [Google Scholar]
  • P.G. Hung and L.D. Muu, The Tikhonov regularization extended to equilibrium problems involving pseudomonotone bifunctions. Nonlinear Anal. Theory Methods App. 74 (2011) 6121–6129. [Google Scholar]
  • A.N. Iusem, On some properties of paramonotone operators. Convex Anal. 5 (1998) 269–278. [Google Scholar]
  • A.N. Iusem and W. Sosa, Iterative algorithms for equilibrium problems. Optimization 52 (2003) 301–316. [Google Scholar]
  • I.V. Konnov and S. Schaible, Duality for equilibrium problems under generalized monotonicity. J. Optim. Theory App. 104 (2000) 395–408. [Google Scholar]
  • G.M. Korpelevich, An extragradient method for finding saddle points and for other problems. Ekon. Mat. Metody 12 (1976) 747–756. [Google Scholar]
  • G. Mastroeni, Gap functions for equilibrium problems. J. Global Optim. 27 (2003) 411–426. [Google Scholar]
  • G. Mastroeni, On auxiliary principle for equilibrium problems, edited by P. Daniele, F. Giannessi and A. Maugeri. In: Vol. 68 of Equilibrium Problems and Variational Models, Nonconvex Optimization and its Applications. Springer, Boston, MA (2003) 289–298. [Google Scholar]
  • A. Moudafi, On the convergence of splitting proximal methods for equilibrium problems in Hilbert spaces. J. Math. Anal. App. 359 (2009) 508–513. [Google Scholar]
  • L.D. Muu and W. Oettli, Convergence of an adaptive penalty scheme for finding constrained equilibria. Nonlinear Anal. 18 (1992) 1159–1166. [Google Scholar]
  • L.D. Muu and T.D. Quoc, Regularization algorithms for solving monotone Ky Fan inequalities with application to a Nash-Cournot equilibrium model. J. Optim. Theory App. 142 (2009) 185–204. [Google Scholar]
  • L.D. Muu and N.V. Quy, On existence and solution methods for strongly pseudomonotone equilibrium problems. Vietnam J. Math. 43 (2015) 229–238. [Google Scholar]
  • P.N. Natarajan, Classical Summability Theory. Springer, Singapore (2017). [Google Scholar]
  • H. Nikaidô and K. Isoda, Note on noncooperative convex games. Pac. J. Math. 5 (1955) 807–815. [Google Scholar]
  • G.B. Passty, Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J. Math. Anal. App. 72 (1979) 383–390. [Google Scholar]
  • T.D. Quoc, L.D. Muu and N.V. Hien, Extragradient algorithms extended to equilibrium problems. Optimization 57 (2008) 749–776. [Google Scholar]
  • T.D. Quoc, P.N. Anh and L.D. Muu, Dual extragradient algorithms extended to equilibrium problems. J. Global Optim. 52 (2012) 139–159. [Google Scholar]
  • P.S.M. Santos and S. Scheimberg, An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 30 (2011) 91–107. [Google Scholar]
  • B.F. Svaiter, On weak convergence of the Douglas–Rachford method. SIAM J. Control Optim. 49 (2011) 280–287. [Google Scholar]
  • K.-K. Tan and H.-K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process. J. Math. Anal. App. 178 (1993) 301–308. [Google Scholar]
  • P.T. Vuong, J.-J. Strodiot and V.H. Nguyen, On extragradient-viscosity methods for solving equilibrium and fixed point problems in a Hilbert space. Optimization 64 (2015) 429–451. [Google Scholar]
  • H.K. Xu, Iterative algorithms for nonlinear operators. J. London Math. Soc. 66 (2002) 240–256. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.