Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2677 - S2690
DOI https://doi.org/10.1051/ro/2020100
Published online 02 March 2021
  • I. Adan and J. Resing, Simple analysis of a fluid queue driven by an M/M/1 queue. Queueing Syst. 22 (1996) 171–174. [Google Scholar]
  • S.I. Ammar, Fluid queue driven by an M/M/1 disasters queue. Int. J. Comput. Math. 91 (2014) 1497–1506. [Google Scholar]
  • D. Anick, D. Mitra and M.M. Sondhi, Stochastic theory of a data-handling system with multiple sources. Bell Syst. Tech. J. 61 (1982) 1871–1894. [Google Scholar]
  • N. Barbot and B. Sericola, Stationary solution to the fluid queue fed by an M/M/1 queue. J. Appl. Probab. 39 (2002) 359–369. [Google Scholar]
  • M. Baykal-Gursoy and W. Xiao, Stochastic decomposition in M/M/∞ queues with Markov modulated service rates. Queueing Syst. 48 (2004) 75–88. [Google Scholar]
  • R. Bekker and M. Mandjes, A fluid model for a relay node in an ad hoc network: the case of heavy-tailed input. Math. Methods Oper. Res. 70 (2009) 357–384. [Google Scholar]
  • B. D’Auria, M/M/∞ queues in semi-Markovian random environment. Queueing Syst. 58 (2008) 221–237. [Google Scholar]
  • A.I. Elwalid and D. Mitra, Analysis and design of rate-based congestion control of high speed networks, I: stochastic fluid models, access regulation. Queueing Syst. Theory App. 9 (1991) 19–64. [Google Scholar]
  • H.M. Jansen, M.R.H. Mandjes, K. De Turck and S. Wittevrongel, A large deviations principle for infinite-server queues in a random environment. Queueing Syst. 82 (2016) 199–235. [Google Scholar]
  • T. Jiang and L. Liu, Analysis of a GI/M/1 queue in a multi-phases service environment with disasters. RAIRO: OR 51 (2016) 79–100. [Google Scholar]
  • T. Jiang and L. Liu, The GI/M/1 queue in a multi-phase service environment with disasters and working breakdowns. Int. J. Comput. Math. 94 (2017) 707–726. [Google Scholar]
  • T. Jiang, L. Liu and J. Li, A analysis of the # queue in multi-phase random environment with disasters. J. Math. Anal. App. 430 (2015) 857–873. [CrossRef] [MathSciNet] [Google Scholar]
  • T. Jiang, S.I. Ammar, B. Chang and L. Liu, Analysis of an N-policy GI/M/1 queue in a multi-phase service environment with disasters. Int. J. Appl. Math. Comput. Sci. 28 (2018) 375–386. [Google Scholar]
  • C. Knessl and J.A. Morrison, Heavy traffic analysis of a data-handling system with many resources. SIAM J. Appl. Math. 51 (1991) 187–213. [Google Scholar]
  • V.G. Kulkarni, Fluid models for single buffer systems. In: Frontiers of Queueing Systems models and applications in science and engineering, edited by J.H. Dshalalow. CRC Press Inc, Boca Raton, FL (1998) 321–338. [Google Scholar]
  • G. Latouche and P. Taylor, A stochastic fluid model for an ad-hoc mobile network. Queueing Syst. 63 (2009) 109–129. [Google Scholar]
  • D. Mitra, Stochastic theory of a fluid model of producers and consumers coupled by a buffer. Adv. Appl. Probab. 20 (1988) 646–676. [Google Scholar]
  • C.A. O’Cinneide and P. Purdue, The M/M/∞ queue in a random environment. J. Appl. Probab. 23 (1986) 175–184. [Google Scholar]
  • P.R. Parthasarathy, K.V. Vijayashree and R.B. Lenin, An M/M/1 driven fluid queue-continued fraction approach. Queueing Syst. 42 (2002) 189–199. [Google Scholar]
  • N. Paz and U. Yechiali, An M/M/1 queue in random environment with disasters. Asia Pac. J. Oper. Res. 31 (2014) 1–12. [Google Scholar]
  • B. Sericola and B. Tuffin, A fluid queue driven by a Markovian queue. Queueing Syst. 31 (1999) 253–264. [Google Scholar]
  • N.P. Sherman and J.P. Kharoufeh, The unreliable M/M/1 retrial queue in a random environment. Stochastic Models 28 (2012) 29–48. [Google Scholar]
  • T.E. Stern and A.I. Elwalid, Analysis of separable Markov-modulated rate models for information-handling systems. Adv. Appl. Probab. 23 (1991) 105–139. [Google Scholar]
  • T. Vijayalakshmi and V. Thangaraj, On a fluid model driven by an M/M/1 queue with catastrophe. Int. J. Inf. Manage. Sci. 23 (2012) 217–228. [Google Scholar]
  • K.V. Vijayashree and A. Anjuka, Stationary analysis of an M/M/1 driven fluid queue subject to catastrophes and subsequent repair. IAENG Int. J. Appl. Math. 43 (2013) 238–241. [Google Scholar]
  • K.V. Vijayashree and A. Anjuka, Fluid queue driven by an M/M/1 queue subject to catastrophes. Comput. Intell. Cyber Secur. Comput. Models 246 (2014) 285–291. [Google Scholar]
  • K.V. Vijayashree and A. Anjuka, Stationary analysis of a fluid queue driven by an M/M/1/N queue with disaster and subsequent repair. Int. J. Oper. Res. 31 (2018) 461–471. [Google Scholar]
  • G.A.F. Vinodhini and V. Vidhya, Computational analysis of queues with catastrophes in a multiphase random environment. Math. Prob. Eng. 2016 (2016) 1–7. [Google Scholar]
  • J. Virtamo and I. Norros, Fluid queue driven by an M/M/1 queue. Queueing Syst. 16 (1994) 373–386. [Google Scholar]
  • X.L. Xu, X.Y. Wang, X.F. Song and X.Q. Li, Fluid model modulated by an M/M/1 working vacation queue with negative customer. Acta Math. Appl. Sin. 34 (2018) 404–415. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.