Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2831 - S2858
Published online 02 March 2021
  • S.A. Alumur, H. Yaman and B.Y. Kara, Hierarchical multimodal hub location problem with time-definite deliveries. Transp. Res. Part E: Logistics Transp. Rev. 48 (2012) 1107–1120. [Google Scholar]
  • N. Azizi, Managing facility disruption in hub-and-spoke networks: formulations and efficient solution methods. Ann. Oper. Res. 272 (2019) 159–185. [Google Scholar]
  • O. Berman, Z. Drezner and G.O. Wesolowsky, The transfer point location problem. Eur. J. Oper. Res. 179 (2007) 978–989. [Google Scholar]
  • E.K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan and R. Qu, Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64 (2013) 1695–1724. [Google Scholar]
  • J.F. Campbell, Location and allocation for distribution systems with transshipments and transportion economies of scale. Ann. Oper. Res. 40 (1992) 77–99. [Google Scholar]
  • J.F. Campbell, Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72 (1994) 387–405. [Google Scholar]
  • S.R. Cardoso, A.P. Barbosa-Póvoa, S. Relvas and A.Q. Novais, Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega 56 (2015) 53–73. [Google Scholar]
  • G. Carello, F.D. Croce, M. Ghirardi and R. Tadei, Solving the hub location problem in telecommunication network design: a local search approach. Networks 44 (2004) 94–105. [Google Scholar]
  • P. Carroll, B. Fortz, M. Labbé and S. McGarraghy, Improved formulations for the ring spur assignment problem, in Network Optimization. INOC 2011, edited by J. Pahl, T. Reiners and S. Voß. Vol. 6701 of Lecture Notes in Computer Science. Springer, Berlin-Heidelberg (2011) 24–36. [Google Scholar]
  • S. Çetiner, C. Sepil and H. Süral, Hubbing and routing in postal delivery systems. Ann. Oper. Res. 181 (2010) 109–124. [Google Scholar]
  • S. Chaharsooghi, F. Momayezi and N. Ghaffarinasab, An adaptive large neighborhood search heuristic for solving the reliable multiple allocation hub location problem under hub disruptions. Int. J. Ind. Eng. Comput. 8 (2016) 191–202. [Google Scholar]
  • I. Contreras, M. Tanash and N. Vidyarthi, Exact and heuristic approaches for the cycle hub location problem. Ann. Oper. Res. 258 (2017) 655–677. [Google Scholar]
  • P.I. Cowling, G. Kendall and E. Soubeiga, A hyperheuristic approach to scheduling a sales summit. In: Practice and Theory of Automated Timetabling III, PATAT ’00. Springer (2001) 176–190. [Google Scholar]
  • W. Dai, J. Zhang, X. Sun and S. Wandelt, Hubbi: iterative network design for incomplete hub location problems. Comput. Oper. Res. 104 (2019) 394–414. [Google Scholar]
  • K. Danach, Hyperheuristics in Logistics. Ph.D. thesis, Ecole Centrale de Lille (2016). [Google Scholar]
  • K. Danach, S. Gelareh and R. Neamatian Monemi, The capacitated single-allocation p-hub location routing problem: a lagrangian relaxation and a hyper-heuristic approach. EURO J. Transp. Logistics. 8 (2019) 597–631. [Google Scholar]
  • J. Denzinger and M. Fuchs, High performance ATP systems by combining several AI methods. In: Vol. 1 of IJCAI’97. Proceedings of the 15th International Joint Conference on Artificial Intelligence. Morgan Kaufmann Publishers Inc. (1997) 102–107. [Google Scholar]
  • J. Ebery, M. Krishnamoorthy, A. Ernst, and N. Boland, The capacitated multiple allocation hub location problem: formulations and algorithms. Eur. J. Oper. Res. 120 (2000) 614–631. [Google Scholar]
  • A.T. Ernst and M. Krishnamoorthy, Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Sci. 4 (1996) 139–154. [Google Scholar]
  • S. Gelareh and S. Nickel, Hub location problems in transportation networks. Transp. Res. Part E: Logistics Transp. Rev. 47 (2011) 1092–1111. [Google Scholar]
  • S. Gelareh, N. Maculan, P. Mahey and R.N. Monemi, Hub-and-spoke network design and fleet deployment for string planning of liner shipping. Appl. Math. Model. 37 (2013) 3307–3321. [Google Scholar]
  • S. Gelareh, R. Neamatian Monemic and F. Semet, Capacitated bounded cardinality hub routing problem: model and solution algorithm. Technical report Preprint arXiv:1705.07985 (2017). [Google Scholar]
  • Z. He, Farthest-point heuristic based initialization methods for k-modes clustering. CoRR, abs/cs/0610043 (2006). [Google Scholar]
  • D. Huang, Z. Liu, X. Fu and P. Blythe, Multimodal transit network design in a hub-and-spoke network framework. Transp. A: Transp. Sci. 14 (2018) 706–35. [Google Scholar]
  • B. Jarboui, H. Derbel, S. Hanafi and N. Mladenovic, Variable neighborhood search for location routing. Comput. Oper. Res. 40 (2013) 47–57. [Google Scholar]
  • H. Kim and M. O’Kelly, Reliable p-hub location problems in telecommunication networks. Geogr. Anal. 41 (2009) 283–306. [Google Scholar]
  • M.J. Kuby and R.G. Gray, The hub network design problem with stopovers and feeders: the case of federal express. Transp. Res. Part A: Policy Practice 27 (1993) 1–12. [Google Scholar]
  • J.B. MacQueen, Some methods for classification and analysis of multivariate observations. In: Vol. 1 of Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press (1967) 281–297. [Google Scholar]
  • E. Martins de Sá, I. Contreras and J.-F. Cordeau, Exact and heuristic algorithms for the design of hub networks with multiple lines. Eur. J. Oper. Res. 246 (2015) 186–198. [Google Scholar]
  • E. Martins de Sá, I. Contreras, J.-F. Cordeau, R. Saraiva de Camargo and G. de Miranda, The hub line location problem. Transp. Sci. 49 (2015) 500–518. [Google Scholar]
  • N. Mladenović and P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24 (1997) 1097–1100. [Google Scholar]
  • M. Mohammadi, R. Tavakkoli-Moghaddam, A. Siadat and Y. Rahimi, A game-based meta-heuristic for a fuzzy bi-objective reliable hub location problem. Eng. App. Artif. Intel. 50 (2016) 1–19. [Google Scholar]
  • R.N. Monemi and S. Gelareh, The ring spur assignment problem: new formulation, valid inequalities and a branch-and-cut approach. Comput. Oper. Res. 88 (2017) 91–102. [Google Scholar]
  • S. Mourelo Ferrandez, T. Harbison, T. Weber, R. Sturges and R. Rich, Optimization of a truck-drone in tandem delivery network using k-means and genetic algorithm. J. Ind. Eng. Manage. 9 (2016) 374. [Google Scholar]
  • M. O’Kelly, Hub facility location with fixed costs. Papers Regional Sci. 71 (1992) 293–306. [Google Scholar]
  • M. O’Kelly, A clustering approach to the planar hub location problem. Ann. Oper. Res. 40 (1993) 339–353. [Google Scholar]
  • M.P. Pérez, F.A. Rodíguez and J.M. Moreno-Vega, A hybrid VNS-path relinking for the p-hub median problem. IMA J. Manage. Math. 18 (2007) 157–171. [Google Scholar]
  • J. Pérez-Ortega, N.A.-O. Nelva, A. Vega-Villalobos, R. Pazos-Rangel, C. Zavala-Diaz and A. Martinez-Rebollar, The K-means algorithm evolution, edited by K. Sud, P. Erdogmus and S. Kadry. In: Introduction to Data Science and Machine Learning. IntechOpen, Rijeka (2020). [Google Scholar]
  • R. Rahmaniani, G. Rahmaniani and A. Jabbarzadeh, Variable neighborhood search based evolutionary algorithm and several approximations for balanced location-allocation design problem. Int. J. Adv. Manuf. Technol. 72 (2014) 145–159. [Google Scholar]
  • I. Rodriguez-Martin, J.J. Salazar González and H. Yaman, A branch-and-cut algorithm for the hub location and routing problem. Comput. Oper. Res. 50 (2014) 161–174. [Google Scholar]
  • I. Rodriguez-Martin, J.J. Salazar González and H. Yaman, The ring k-rings network design problem: model and branch-and-cut algorithm. Networks 68 (2016) 130–140. [Google Scholar]
  • B. Rostami, N. Kämmerling, C. Buchheim and U. Clausen, Reliable single allocation hub location problem under hub breakdowns. Comput. Oper. Res. 96 (2018) 15–29. [Google Scholar]
  • E. Serper and S. Alumur Alev, The design of capacitated intermodal hub networks with different vehicle types. Transp. Res. Part B: Methodol. 86 (2016) 51–65. [Google Scholar]
  • D. Skorin-Kapov, J. Skorin-Kapov and M. O’Kelly, Tight linear programming relaxations of uncapacitated p-hub median problems. Eur. J. Oper. Res. 94 (1996) 582–593. [Google Scholar]
  • R. Todosijević, D. Urosevic, N. Mladenovic and S. Hanafi, A general variable neighborhood search for solving the uncapacitated r-allocation p-hub median problem. Optim. Lett. 11(2017) 1109-1121. [Google Scholar]
  • UNCTAD, Review of maritime transport. In: United Nations Conference on Trade and Development, New York and Geneva (2018). [Google Scholar]
  • M. Yahyaei, M. Bashiri and Y. Garmeyi, Multicriteria logistic hub location by network segmentation under criteria weights uncertainty. Int. J. Eng. Trans. B: App. 27 (2014) 1205–1214. [Google Scholar]
  • M. Yahyaei, M. Bashiri and M. Randall, A model for a reliable single allocation hub network design under massive disruption. Appl. Soft Comput. 82 (2019) 105561. [Google Scholar]
  • H. Yaman, B.Y. Kara and B. Tansel, The latest arrival hub location problem for cargo delivery systems with stopovers. Transp. Res. Part B: Methodol. 41 (2007) 906–919. [Google Scholar]
  • K. Yang, Y. Liu and G. Yang, An improved hybrid particle swarm optimization algorithm for fuzzy p-hub center problem. Comput. Ind. Eng. 64 (2013) 133–142. [Google Scholar]
  • M. Zhalechian, S.A. Torabi and M. Mohammadi, Hub-and-spoke network design under operational and disruption risks. Transp. Res. Part E: Logistics Transp. Rev. 109 (2018) 20–43. [Google Scholar]
  • W. Zhong, Z. Juan, F. Zong and H. Su, Hierarchical hub location model and hybrid algorithm for integration of urban and rural public transport. Int. J. Distr. Sensor Netw. 14 (2018). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.