Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S3035 - S3050
Published online 02 March 2021
  • A. Abbassi, E.H.A. Ahmed and J. Boukachour, Robust optimisation of the intermodal freight transport problem: modeling and solving with an efficient hybrid approach. J. Comput. Sci. 30 (2019) 127–142. [Google Scholar]
  • G. Assadipour, G.Y. Ke and M. Verma, Planning and managing intermodal transportation of hazardous materials with capacity selection and congestion. Transp. Res. Part E: Logistics Transp. Rev. 76 (2015) 45–57. [Google Scholar]
  • H. Ayed, Z. Habbas, D. Khadraoui and F. Galvez, A parallel algorithm for solving time dependent multimodal transport problem [C]. In: International IEEE Conference on Intelligent Transportation Systems. IEEE, Washington, DC (2011). [Google Scholar]
  • F. Bruns and S. Knust, Optimized load planning of trains in intermodal transportation. OR Spectrum 34 (2012) 511–533. [Google Scholar]
  • T.S. Chang, Best routes selection in international intermodal networks. J. Dalian Maritime Univ. 35 (2008) 2877–2891. [Google Scholar]
  • J.H. Cho, H.S. Kim, H.R. Choi, N.K. Park and M.H. Kang, An intermodal transport network planning algorithm using dynamic programming. Appl. Intell. 36 (2012) 529–541. [Google Scholar]
  • K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, A fast and elitist multi-objective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2002) 182–197. [Google Scholar]
  • E. Demir, W. Burgholzer, M. Hrušovský, E. Arıkan, W. Jammernegg and T.V. Woensel, A green intermodal service network design problem with travel time uncertainty. Transp. Res. Part B: Methodol. 93 (2016) 789–807. [Google Scholar]
  • S. Fazayeli, A. Eydi and I.N. Kamalabadi, Location-routing problem in multimodal transportation network with time windows and fuzzy demands: presenting a two-part genetic algorithm. Comput. Ind. Eng. 119 (2018) 233–246. [Google Scholar]
  • L.J. Fogel, A.J. Owens and M.J. Walsh, Artificial Intelligence Through Simulated Evolution. John Wiley & Sons, New York, NY (1966). [Google Scholar]
  • A. Ghaderi and R.L. Burdett, An integrated location and routing approach for transporting hazardous materials in a bi-modal transportation network. Transp. Res. Part E: Logistics Transp. Rev. 127 (2019) 49–65. [Google Scholar]
  • S.E. Grasman, Dynamic approach to strategic and operational multimodal routing decisions. Int. J. Logistics Syst. Manage. 2 (2006) 96. [Google Scholar]
  • C. Hao and Y. Yue, Optimization on combination of transport routes and modes on dynamic programming for a container multimodal transport system. Proc. Eng. 137 (2016) 382–390. [Google Scholar]
  • M. Hrusovsky, E. Demir, W. Jammernegg and T.V. Woensel, Hybrid simulation and optimization approach for green intermodal transportation problem with travel time uncertainty. Flexible Serv. Manuf. J. 30 (2016) 486–516. [Google Scholar]
  • J.S.L. Lam and Y. Gu, A market-oriented approach for intermodal network optimization meeting cost, time and environmental requirements. Int. J. Prod. Econ. 171 (2016) 266–274. [Google Scholar]
  • L. Li, R.R. Negenborn and B. De Schutter, Intermodal freight transport planning – A receding horizon control approach. Transp. Res. Part C: Emerg. Technol. 60 (2015) 77–95. [Google Scholar]
  • S. Liu, Y. Peng, Q.K. Song and Y.Y. Zhong, The robust shortest path problem for multimodal transportation considering timetable with interval data. Syst. Sci. Control Eng. 6 (2018) 68–78. [Google Scholar]
  • C. Macharis and E. Pekin, Assessing policy measures for the stimulation of intermodal transport: a GIS-based policy analysis. J. Transp. Geogr. 17 (2009) 500–508. [Google Scholar]
  • I.A. Martínez-Salazar, J. Molina, F. Ángel-Bello, T. Gómez and R. Caballero, Solving a bi-objective transportation location routing problem by metaheuristic algorithms. Eur. J. Oper. Res. 234 (2014) 25–36. [Google Scholar]
  • G. Mavrotas and K. Florios, An improved version of the augmented ɛ-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219 (2013) 9652–9669. [Google Scholar]
  • M. Mnif and S. Bouamama, Firework algorithm for multi-objective optimization of a multimodal transportation network problem. Proc. Comput. Sci. 112 (2017) 1670–1682. [Google Scholar]
  • R.E. Moore, Methods and Applications of Interval Analysis. Vol 2 of Studies in Applied and Numerical Mathematics. SIAM, Philadelphia, PA (1979). [Google Scholar]
  • H.G. Resat and M. Turkay, Design and operation of intermodal transportation network in the Marmara region of Turkey. Transp. Res. Part E: Logistics Transp. Rev. 83 (2015) 16–33. [Google Scholar]
  • J.R. Schott, Fault tolerant design using single and multi-criteria genetic algorithms. Masters Thesis, Massachusetts Institute of Technology (1995). [Google Scholar]
  • Y. Sheng and Y. Gao, Shortest path problem of uncertain random network. Comput. Ind. Eng. 99 (2016) 97–105. [Google Scholar]
  • M. Steadieseifi, N.P. Dellaert, W. Nuijten, T. Van Woensel and R. Raoufi, Multimodal freight transportation planning: a literature review. Eur. J. Oper. Res. 233 (2014) 1–15. [Google Scholar]
  • J.C. Thill and H. Lim, Intermodal containerized shipping in foreign trade and regional accessibility advantages. J. Transp. Geogr. 18 (2010) 530–547. [Google Scholar]
  • X. Wang and Q. Meng, Discrete intermodal freight transportation network design with route choice behavior of intermodal operators. Transp. Res. Part B Methodol. 95 (2017) 76–104. [Google Scholar]
  • L. Wang, L. Yang and Z.Y. Gao, The constrained shortest path problem with stochastic correlated link travel times. Eur. J. Oper. Res. 255 (2016) 43–57. [Google Scholar]
  • R. Wang, K. Yang, L. Yang and Z.Y. Gao, Modeling and optimization of a road-rail intermodal transport system under uncertain information. Eng. App. Artif. Intell. 72 (2018) 423–436. [Google Scholar]
  • H. Wei and M. Dong, Import-export freight organization and optimization in the dry-port-based cross-border logistics network under the Belt and Road Initiative. Comput. Ind. Eng. 130 (2019) 472–484. [Google Scholar]
  • T. Yamada, B.F. Russ, J. Castro and E. Taniguchi, Designing multimodal freight transport networks: a heuristic approach and applications. Transp. Sci. 43 (2009) 129–143. [Google Scholar]
  • S. Yan, L. Maoxiang and W. Danzhu, Bi-objective modelling for hazardous materials road-rail multimodal routing problem with railway schedule-based space-time constraints. Int. J. Environ. Res. Public Health 13 (2016) 1–31. [Google Scholar]
  • X. Yang, J.M.W. Low and L.C. Tang, Analysis of intermodal freight from China to Indian Ocean: a goal programming approach. J. Transp. Geogr. 19 (2011) 515–527. [Google Scholar]
  • K. Yang, L. Yang and Z. Gao, Planning and optimization of intermodal hub-and-spoke network under mixed uncertainty. Transp. Res. Part E: Logistics Transp. Rev. 95 (2016) 248–266. [Google Scholar]
  • M.H.F. Zarandi, A. Hemmati, S. Davari and I.B. Turksen, Capacitated location-routing problem with time windows under uncertainty. Knowl.-Based Syst. 37 (2013) 480–489. [Google Scholar]
  • R. Zhang, W.Y. Yun and I.K. Moon, Modeling and optimization of a container drayage problem with resource constraints. Int. J. Prod. Econ. 133 (2011) 351–359. [Google Scholar]
  • J. Zhang, Q. Zhang and L. Zhang, A Study on the Paths Choice of Intermodal Transport Based on Reliability, in Z. Zhang, Z. Shen, J. Zhang, R. Zhang (eds) LISS 2014. Springer, Berlin-Heidelberg (2015) 305–315. [Google Scholar]
  • Y. Zhang, P. Liu, L. Yang and Y. Gao, A bi-objective model for uncertain multi-modal shortest path problems. J. Uncertainty Anal. App. 3 (2015) 8. [Google Scholar]
  • E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evol. Comput. 3 (1999) 257–271. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.