Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2071 - S2082
Published online 02 March 2021
  • H. Akcan and C. Evrendilek, Complexity of energy efficient localization with the aid of a mobile beacon. IEEE Commun. Lett. 22 (2018) 392–395. [Google Scholar]
  • M.B. Akçay, H. Akcan and C. Evrendilek, All colors shortest path problem on trees. J. Heurist. 24 (2018) 617–644. [Google Scholar]
  • A. Benkouar, Y. Manoussakis, V.Th. Paschos and R. Saad, On the complexity of finding alternating Hamiltonian and Eulerian cycles in edge-coloured graphs. Lect. Notes Comput. Sci. 557 (1991) 190–198. [Google Scholar]
  • A. Benkouar, Y. Manoussakis, V.Th. Paschos and R. Saad, Hamiltonian problems in edge-colored complete graphs and Eulerian cycles in edge-colored graphs: Some complexity results. RAIRO: OR 30 (1996) 417–438. [Google Scholar]
  • Y. Can Bilge, D. Çağatay, B. Genç, M. Sarı, H. Akcan and C. Evrendilek, All colors shortest path problem. arXiv:1507.06865. [Google Scholar]
  • F. Carrabs, R. Cerulli, G. Felici and G. Singh, Exact approaches for the orderly colored longest path problem: Performance comparison. Comput. Oper. Res. 101 (2019) 275–284. [Google Scholar]
  • F. Carrabs, R. Cerulli, R. Pentangelo and A. Raiconi, A two-level metaheuristic for the All-Colors Shortest Path problem. Comput. Opt. Appl. 71 (2018) 525–551. [Google Scholar]
  • V. Dimitrijević and Z. Šarić, An efficient transformation of the generalized traveling salesman problem into the traveling salesman problem on digraphs. Inform. Sci. 102 (1997) 105–110. [Google Scholar]
  • M. Fischetti, J.J. Salazar González and P. Toth, The symmetric generalized traveling salesman polytope. Networks 26 (1995) 113–123. [Google Scholar]
  • M. Fischetti, J.J. Salazar González and P. Toth, A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45 (1997) 378–394. [Google Scholar]
  • K. Helsgaun, An effective implementation of the Lin–Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126 (2000) 106–130. [Google Scholar]
  • K. Helsgaun, General k-opt submoves for the Lin–Kernighan TSP heuristic. Math. Program. Comput. 1 (2009) 119–163. [Google Scholar]
  • K. Helsgaun, Solving the equality generalized traveling salesman problem using the Lin–Kernighan–Helsgaun algorithm. Math. Program. Comput. 7 (2015) 269–287. [Google Scholar]
  • I. Kara, H. Guden and O.N. Koc, New formulations for the generalized traveling salesman problem. In Proceedings of the 6th International Conference on Applied Mathematics, Simulation, Modelling (ASM ’12) (2012) 60–65. [Google Scholar]
  • G. Laporte and Y. Nobert, Generalized traveling salesman through n sets of nodes: An integer programming approach. Infor. 21 (1983) 61–75. [Google Scholar]
  • S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling-salesman problem. Oper. Res. 21 (1973) 498–516. [Google Scholar]
  • X.H. Shi, Y.C. Liang, H.P. Lee, C. Lu and Q.X. Wang, Particle swarm optimization-based algorithms for TSP and generalized TSP. Inf. Process. Lett. 103 (2007) 69–176. [Google Scholar]
  • J. Silberholz and B. Golden, The generalized traveling salesman problem: A new genetic algorithm approach. In: Vol. 37 of Extending the Horizons: Advances in Computing, Optimization, and Decision Technologies. Operations Research/Computer Science Interfaces Series, edited by E.K. Baker, A. Joseph, A. Mehrotra, and M.A. Trick. Springer, Boston, MA (2007) 165–181. [Google Scholar]
  • L.V. Snyder and M.S. Daskin, A random-key genetic algorithm for the generalized traveling salesman problem. Eur. J. Oper. Res. 174 (2006) 38–53. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.