Free Access
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2241 - S2258
Published online 02 March 2021
  • R.A. Abrams and A. Ben-Israel, A duality theorem for complex quadratic programming. J. Optim. Theory App. 4 (1969) 244–252. [Google Scholar]
  • Y. Almogy and O. Levin, A class of fractional programming problems. Oper. Res. 19 (1971) 57–67. [Google Scholar]
  • L. Bai, J.E. Mitchell and J.-S. Pang, Using quadratic convex reformulation to tighten the convex relaxation of a quadratic program with complementarity constraints. Optim. Lett. 8 (2014) 811–822. [Google Scholar]
  • C. Bector, S. Chandra and T. Gulati, A lagrangian approach to duality for complex nonlinear fractional programming over cones. Optimization 8 (1977) 17–25. [Google Scholar]
  • A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. SIAM, Philadelphia, PA (2001). [Google Scholar]
  • H. Cai, Y. Wang and T. Yi, An approach for minimizing a quadratically constrained fractional quadratic problem with application to the communications over wireless channels. Optim. Methods Softw. 29 (2014) 310–320. [Google Scholar]
  • H. Chen, A.B. Gershman and S. Shahbazpanahi, Filter-and-forward distributed beamforming in relay networks with frequency selective fading. IEEE Trans. Signal Process. 58 (2009) 1251–1262. [Google Scholar]
  • X. Chen, X. Wang and X. Chen, Energy-efficient optimization for wireless information and power transfer in large-scale mimo systems employing energy beamforming. IEEE Wireless Commun. Lett. 2 (2013) 667–670. [Google Scholar]
  • C.S. Colantoni, R.P. Manes and A. Whinston, Programming, profit rates and pricing decisions. Acc. Rev. 44 (1969) 467–481. [Google Scholar]
  • B.D. Craven, Fractional Programming. Heldermann Verlag, Weinheim 4 (1988). [Google Scholar]
  • A. De Maio, S. De Nicola, Y. Huang, S. Zhang and A. Farina, Adaptive detection and estimation in the presence of useful signal and interference mismatches. IEEE Trans. Signal Process. 57 (2008) 436–450. [Google Scholar]
  • A. De Maio and Y. Huang, New results on fractional QCQP with applications to radar steering direction estimation. IEEE Signal Process. Lett. 21 (2014) 895–898. [Google Scholar]
  • A. De Maio, Y. Huang, D.P. Palomar, S. Zhang and A. Farina, Fractional QCQP with applications in ml steering direction estimation for radar detection. IEEE Trans. Signal Process. 59 (2010) 172–185. [Google Scholar]
  • W. Dinkelbach, On nonlinear fractional programming. Manage. Sci. 13 (1967) 492–498. [Google Scholar]
  • M. Grant and S. Boyd, Cvx: Matlab software for disciplined convex programming, version 2.1 (2014). [Google Scholar]
  • A. Hassanien and S.A. Vorobyov, A robust adaptive dimension reduction technique with application to array processing. IEEE Signal Process. Lett. 16 (2008) 22–25. [Google Scholar]
  • Y. Huang and S. Zhang, Complex matrix decomposition and quadratic programming. Math. Oper. Res. 32 (2007) 758–768. [Google Scholar]
  • H.-C. Lai and J. Liu, Complex fractional programming involving generalized quasi/pseudo convex functions. ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech. 82 (2002) 159–166. [Google Scholar]
  • J.-C. Liu, C.-C. Lin and R.-L. Sheu, Optimality and duality for complex nondifferentiable fractional programming. J. Math. Anal. App. 210 (1997) 804–824. [Google Scholar]
  • C. Lu, S.-C. Fang, Q. Jin, Z. Wang and W. Xing, KKT solution and conic relaxation for solving quadratically constrained quadratic programming problems. SIAM J. Optim. 21 (2011) 1475–1490. [Google Scholar]
  • J. Ma, W. Liu and R. Langley, Filter-and-forward distributed relay beamforming for cognitive radio systems. In: 2015 IEEE International Conference on Communication Workshop (ICCW). IEEE (2015) 895–900. [Google Scholar]
  • J. Ohlson and W. Ziemba, Optimal portfolio policies for an investor with a power utility function facing a log normal securities market. J. Financ. Quant. Anal 11 (1976) 1. [Google Scholar]
  • N.T.H. Phuong and H. Tuy, A unified monotonic approach to generalized linear fractional programming. J. Global Optim. 26 (2003) 229–259. [Google Scholar]
  • B.T. Polyak, A general method for solving extremal problems. In: Vol. 174 of Doklady Akademii Nauk. Russian Academy of Sciences, Doklady (1967) 33–36. [Google Scholar]
  • S. Ramprashad, T.W. Parks and R. Shenoy, Signal modeling and detection using cone classes. IEEE Trans. Signal Process. 44 (1996) 329–338. [Google Scholar]
  • N.Z. Shor, Dual quadratic estimates in polynomial and boolean programming. Ann. Oper. Res. 25 (1990) 163–168. [Google Scholar]
  • R.J. Stern and H. Wolkowicz, Indefinite trust region subproblems and nonsymmetric eigenvalue perturbations. SIAM J. Optim. 5 (1995) 286–313. [Google Scholar]
  • J.F. Sturm and S. Zhang, On cones of nonnegative quadratic functions. Math. Oper. Res. 28 (2003) 246–267. [Google Scholar]
  • K. Swarup and J. Sharma, Programming with linear fractional functionals in complex spaces. Cahiers du centre d’Etudes et de Recherche Operationelle 12 (1970) 103–109. [Google Scholar]
  • S. Yamada and A. Takeda, Successive lagrangian relaxation algorithm for nonconvex quadratic optimization. J. Global Optim. 71 (2018) 313–339. [Google Scholar]
  • A. Zare, M. Keyanpour and M. Salahi, On fractional quadratic optimization problem with two quadratic constraints. Numer. Algebra Control Optim. 10 (2020) 301. [Google Scholar]
  • A. Zhang and S. Hayashi, Celis-dennis-tapia based approach to quadratic fractional programming problems with two quadratic constraints. Numer. Algebra Control Optim. 1 (2011) 83–98. [Google Scholar]
  • J. Zhang and M.C. Gursoy, Relay beamforming strategies for physical-layer security. In: 2010 44th Annual Conference on Information Sciences and Systems (CISS). IEEE (2010) 1–6. [Google Scholar]
  • J. Zhang, L. Guo, T. Kang and P. Zhang, Cooperative beamforming in cognitive radio network with two-way relay. In: 2014 IEEE 79th Vehicular Technology Conference (VTC Spring). IEEE (2014) 1–5. [Google Scholar]
  • G. Zheng, K.-K. Wong, A. Paulraj and B. Ottersten, Collaborative-relay beamforming with perfect CSI: Optimum and distributed implementation. IEEE Signal Process. Lett. 16 (2009) 257–260. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.