Free Access
Issue
RAIRO-Oper. Res.
Volume 55, 2021
Regular articles published in advance of the transition of the journal to Subscribe to Open (S2O). Free supplement sponsored by the Fonds National pour la Science Ouverte
Page(s) S2471 - S2485
DOI https://doi.org/10.1051/ro/2020139
Published online 02 March 2021
  • W. Altherr, An algorithm for enumerating all vertices of a convex polyhedron. Computing 15 (1975) 181–193. [Google Scholar]
  • D. Avis, Computational experience with the reverse search vertex enumeration algorithm. Optim. Methods Softw. 10 (1998) 107–124. [Google Scholar]
  • D. Avis and K. Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8 (1992) 295–313. [Google Scholar]
  • D. Avis, D. Bremner and R. Seidel, How good are convex hull algorithms? Comput. Geom. Theory App. 7 (1997) 265–302. [Google Scholar]
  • M.L. Balinski, An algorithm for finding all vertices of a convex polyhedral set. J. Soc. Ind. Appl. Math. 9 (1961) 72–88. [Google Scholar]
  • C. Barber, D. Dobkin and H. Huhdanpaa, The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. ACM TOMS 22 (1996) 469–483. [Google Scholar]
  • H.P. Benson, An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global Optim. 13 (1998) 1–24. [Google Scholar]
  • B.A. Burton and M. Ozlen, Projective geometry and the outer approximation algorithm for multiobjective linear programming. Preprint arXiv:1006.3085 (2010). [Google Scholar]
  • P.C. Chen, P. Hansen and B. Jaumard, On-line and off-line vertex enumeration by adjacency lists. Oper. Res. Lett. 10 (1991) 403–409. [Google Scholar]
  • W.D. Cook and L.M. Seiford, Data envelopment analysis (dea)–thirty years on. Eur. J. Oper. Res. 192 (2009) 1–17. [Google Scholar]
  • W.W. Cooper, L.M. Seiford and J. Zhu, Handbook on Data Envelopment Analysis. Vol. 164 of : International Series in Operations Research & Management Science. Springer, New York, NY (2011). [CrossRef] [Google Scholar]
  • L. Csirmaz, Using multiobjective optimization to map the entropy region. Comput. Optim. App. 63 (2016) 45–67. [Google Scholar]
  • M.E. Dyer and L.G. Proll, An improved vertex enumeration algorithm. Eur. J. Oper. Res. 9 (1982) 359–368. [Google Scholar]
  • M. Ehrgott, Multicriteria Optimization. Springer, New York, NY (2005). [Google Scholar]
  • M. Ehrgott, L. Shao and A. Schöbel, An approximation algorithm for convex multi-objective programming problems. J. Global Optim. 50 (2011) 397–416. [Google Scholar]
  • M. Ehrgott, M. Hasannasab and A. Raith, A multiobjective optimization approach to compute the efficient frontier in data envelopment analysis. J. Multi-Criteria Decis. Anal. 26 (2019) 187–198. [Google Scholar]
  • K. Fukuda and A. Prodon, Double description method revisited. Comb. Comput. Sci. 1120 (1996) 91–111. [Google Scholar]
  • A.H. Hamel, A. Löhne and B. Rudloff, Benson type algorithms for linear vector optimization and applications. J. Global Optim. 59 (2014) 811–836. [Google Scholar]
  • L. Khachiyan, E. Boros, K. Borys, K. Elbassioni and V. Gurvich, Generating all vertices of a polyhedron is hard. Discrete Comput. Geom. 39 (2008) 174–190. [Google Scholar]
  • J.S. Liu, L.Y.Y. Lu, W. Lu and B.J.Y. Lin, A survey of DEA applications. Omega 41 (2013) 893–902. [Google Scholar]
  • A. Löhne, Vector Optimization with Infimum and Supremum. Springer, Berlin-Heidelberg (2011). [Google Scholar]
  • A. Löhne, BENSOLVE: A free VLP solver, version 1.2 (2012). [Google Scholar]
  • A. Löhne and B. Weißing, BENSOLVE: A free VLP solver, version 2.0.1 (2015). [Google Scholar]
  • A. Löhne, B. Rudloff and F. Ulus, Primal and dual approximation algorithms for convex vector optimization problems. J. Global Optim. 60 (2014) 713–736. [Google Scholar]
  • S.T. Motzkin, G.L. Raiffa, G.L. Thompson and M.L. Thrall, The double description method. Contrib. Theory Games 2 (1953) 51–74. [Google Scholar]
  • A. Pascoletti and P. Serafini, Scalarizing vector optimization problems. J. Optim. Theory App. 42 (1984) 499–524. [Google Scholar]
  • R.T. Rockafellar, Convex Analysis. Princeton University Press (1970). [Google Scholar]
  • B.K. Schmidt and T.H. Mattheiss, Computational results on an algorithm for finding all vertices of a poltyope. Math. Program. 18 (1980) 308–329. [Google Scholar]
  • H. Tuy, Canonical DC programming problem: outer approximation methods revisited. Oper. Res. Lett. 18 (1995) 99–106. [Google Scholar]
  • P. Zhou, B.W. Ang and K.L. Poh, A survey of data envelopment analysis in energy and environmental studies. Eur. J. Oper. Res. 189 (2008) 1–18. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.