Free Access
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 673 - 687
Published online 31 March 2021
  • M. Abdelgalil, Z. Yahia and A.B. Eltawil, A proposed new dynamic programming formulation for the nurse rostering problem. In: Proceedings of 47th International Conference on Computers and Industrial Engineering (2017). [Google Scholar]
  • M.A. Awadallah, A.T. Khader, M.A. Al-Betar and A.L. Bolaji, Global best harmony search with a new pitch adjustment designed for nurse rostering. J. King Saud Univ. Comput. Inf. Sci. 25 (2013) 145–162. [Google Scholar]
  • M.A. Awadallah, A.L. Bolaji and M.A. Al-Betar, A hybrid artificial bee colony for a nurse rostering problem. Appl. Soft Comput. 35 (2015) 726–739. [Google Scholar]
  • E.K. Burke and T. Curtois, New approaches to nurse rostering benchmark instances. Eur. J. Oper. Res. 237 (2014) 71–81. [Google Scholar]
  • E.K. Burke, T. Curtois, R. Qu and G. Vanden Berghe, A time predefined variable depth search for nurse rostering. Informs J. Comput. 25 (2013) 411–419. [Google Scholar]
  • E.K. Burke, J. Li and R. Qu, A hybrid model of integer programming and variable neighbourhood search for highly-constrained nurse rostering problems. Eur. J. Oper. Res. 203 (2010) 484–493. [Google Scholar]
  • S. Ceschia, N.T.T. Dang, P. De Causmaecker, S. Haspeslagh and A. Schaerf, Second International Nurse Rostering Competition (INRC-II) – Problem description and rules. Preprint arXiv:1501.04177 (2015). [Google Scholar]
  • T. Curtois and R. Qu, Computational results on new staff scheduling benchmark instances. Technical report, ASAP Research Group, School of Computer Science, University of Nottingham (2014). [Google Scholar]
  • S.C. Gao and C.W. Lin, Particle swarm optimization based nurses shift scheduling. In: Proceedings of the Institute of Industrial Engineers Asian Conference (2013) 775–782. [Google Scholar]
  • C.A. Glass and R.A. Knight, The nurse rostering problem: a critical appraisal of the problem structure. Eur. J. Oper. Res. 202 (2010) 379–389. [Google Scholar]
  • M. Hadwan, M. Ayob, N.R. Sabar and R. Qu, A harmony search algorithm for nurse rostering problems. Inf. Sci. 233 (2013) 126–140. [Google Scholar]
  • S. Haspeslagh, P. De Causmaecker, A. Schaerf and M. Stolevik, The first international nurse rostering competition 2010. Ann. Oper. Res. 218 (2014) 221–236. [Google Scholar]
  • S. Martin, D. Ouelhadj, P. Smet, G. Vanden Berghe and E. Zcan, Cooperative search for fair nurse rosters. Expert Syst. App. 40 (2013) 6674–6683. [Google Scholar]
  • R. M’Hallah and A. Alkhabbaz, Scheduling of nurses: a case study of a Kuwaiti health care unit. Oper. Res. Health Care 2 (2013) 1–19. [Google Scholar]
  • E. Rönnberg, T. Larsson and A. Bertilsson, Automatic scheduling of nurses: What does it take in practice? In: Systems Analysis Tools for Better Health Care Delivery (2013) 151–178. [Google Scholar]
  • I.X. Tassopoulos, I.P. Solos and G.N. Beligiannis, A two-phase adaptive variable neighborhood approach for nurse rostering. Comput. Oper. Res. 60 (2015) 150–169. [Google Scholar]
  • C. Valouxis, C. Gogos, G. Goulas, P. Alefragis and E. Housos, A systematic two phase approach for the nurse rostering problem. Eur. J. Oper. Res. 219 (2012) 425–433. [Google Scholar]
  • T.C. Wong, M. Xu and K.S. Chin, A two-stage heuristic approach for nurse scheduling problem: a case study in an emergency department. Comput. Oper. Res. 51 (2014) 99–110. [Google Scholar]
  • World Health Organization, Nursing and midwifery. (2018). [Google Scholar]
  • T.H. Wu, J.Y. Yeh and Y.M. Lee, A particle swarm optimization approach with refinement procedure for nurse rostering problem. Comput. Oper. Res. 54 (2015) 52–63. [Google Scholar]
  • Z. Zheng and X. Gong, Chemical reaction optimization for nurse rostering problem. In: Frontier and Future Development of Information Technology in Medicine and Education (2014) 3275–3279. [Google Scholar]
  • L. Zhipeng and J. Hao, Adaptive neighborhood search for nurse rostering. Eur. J. Oper. Res. 218 (2012) 865–876. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.