RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Decision and Optimization in Service, Control and Engineering (CoDIT2019-DOSCE)
Page(s) 1113 - 1135
Published online 06 May 2021
  • M. Acar and O. Kaya, A healthcare network design model with mobile hospitals for disaster preparedness: a case study for Istanbul earthquake. Transp. Res. Part E: Logistics Transp. Rev. 130 (2019) 273–292. [Google Scholar]
  • O.I. Alsalloum and G.K. Rand, Extensions to emergency vehicle location models. Comput. Oper. Res. 33 (2006) 2725–2743. [CrossRef] [Google Scholar]
  • Y. An, B. Zeng, Y. Zhang and L. Zhao, Reliable p-median facility location problem: two-stage robust models and algorithms. Transp. Res. Part B: Methodol. 64 (2014) 54–72. [Google Scholar]
  • A.B. Arabani and R.Z. Farahani, Facility location dynamics: an overview of classifications and applications. Comput. Ind. Eng. 62 (2012) 408–420. [Google Scholar]
  • M.G. Ashtiani, A. Makui and R. Ramezanian, A robust model for a leader–follower competitive facility location problem in a discrete space. Appl. Math. Model. 37 (2013) 62–71. [Google Scholar]
  • P. Augerat, J.M. Belenguer, E. Benavent, A. Corberán, D. Naddef and G. Rinaldi, Computational Results with a Branch and Cut Code for the Capacitated Vehicle Routing Problem (IMAG) (1995). [Google Scholar]
  • J. Badal, M. Vázquez-Prada and Á. González, Preliminary quantitative assessment of earthquake casualties and damages. Nat. Hazards 34 (2005) 353–374. [Google Scholar]
  • X. Bai, Two-stage multiobjective optimization for emergency supplies allocation problem under integrated uncertainty. Math. Prob. Eng. 2016 (2016) 2823835. [Google Scholar]
  • M. Baou and F. Barahona, A polyhedral study of a two level facility location model. RAIRO:OR 48 (2014) 153–165. [Google Scholar]
  • O. Baron, J. Milner and H. Naseraldin, Facility location: a robust optimization approach. Prod. Oper. Manage. 20 (2011) 772–785. [Google Scholar]
  • M. Bastian and M. Volkmer, A perfect forward procedure for a single facility dynamic location/relocation problem. Oper. Res. Lett. 12 (1992) 11–16. [Google Scholar]
  • A. Beck, Introduction to Nonlinear Optimization: Theory, Algorithms, and Applications with MATLAB. SIAM (2014). [Google Scholar]
  • S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press (2004). [CrossRef] [Google Scholar]
  • C.G. Broyden, Quasi-Newton methods. In: Numerical Methods for Unconstrained Optimization. Academic Press, New York (1972). [Google Scholar]
  • R.H. Byrd, P. Lu, J. Nocedal and C. Zhu, A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16 (1995) 1190–208. [Google Scholar]
  • C. Cao, Y. Liu, O. Tang and X. Gao, A fuzzy bi-level optimization model for multi-period post-disaster relief distribution in sustainable humanitarian supply chains. Int. J. Prod. Econ. (2021) 108081. [Google Scholar]
  • E. Cetin and L.S. Sarul, A blood bank location model: a multiobjective approach. Eur. J. Pure Appl. Math. 2 (2009) 112–124. [Google Scholar]
  • S. Chanta, M.E. Mayorga and L.A. McLay, Improving emergency service in rural areas: a bi-objective covering location model for EMS systems. Ann. Oper. Res. 221 (2014) 133–159. [Google Scholar]
  • C.-H. Chen and C.-J. Ting, Combining Lagrangian heuristic and ant colony system to solve the single source capacitated facility location problem. Transp. Res. Part E: Logistics Transp. Rev. 44 (2008) 1099–1122. [Google Scholar]
  • Y. Chen, Q. Zhao, L. Wang and M. Dessouky, The regional cooperation-based warehouse location problem for relief supplies. Comput. Ind. Eng. 102, 259–267. [Google Scholar]
  • W.-Y. Chiu and B.-S. Chen, Mobile location estimation in urban areas using mixed Manhattan/Euclidean norm and convex optimization. IEEE Trans. Wireless Commun. 8 (2009) 414–423. [Google Scholar]
  • R. Church and C.R. Velle, The maximal covering location problem. Papers Reg. Sci. 32 (1974) 101–118. [Google Scholar]
  • I.A. Contreras and J.A. Daz, Scatter search for the single source capacitated facility location problem. Ann. Oper. Res. 157 (2008) 73–89. [Google Scholar]
  • M. Csorgo, Quantile Processes with Statistical Applications. SIAM (1983). [Google Scholar]
  • V. De Rosa, E. Hartmann, M. Gebhard and J. Wollenweber, Robust capacitated facility location model for acquisitions under uncertainty. Comput. Ind. Eng. 72 (2014) 206–216. [Google Scholar]
  • F.Y. Edgeworth, XXII, On a new method of reducing observations relating to several quantities. London Edinburgh Dublin Phil. Mag. J. Sci. 25 (1888) 184–191. [Google Scholar]
  • S. Esnaf and T. Küçükdeniz, A fuzzy clustering-based hybrid method for a multi-facility location problem. J. Intell. Manuf. 20 (2009) 259–265. [Google Scholar]
  • R.Z. Farahani, Z. Drezner and N. Asgari, Single facility location and relocation problem with time dependent weights and discrete planning horizon. Anna. Oper. Res. 167 (2009) 353–368. [Google Scholar]
  • R. Fletcher, A new approach to variable metric algorithms. Comput. J. 13 (1970) 317–322. [CrossRef] [Google Scholar]
  • R.L. Francis, J.A. White and L.F. McGinnis, Facility Layout and Location: An Analytical Approach. Prentice-Hall Englewood Cliffs, NJ (1974). [Google Scholar]
  • X. Gao, A bi-level stochastic optimization model for multi-commodity rebalancing under uncertainty in disaster response. Ann. Oper. Res. (2019) 1–34. [Google Scholar]
  • X. Gao, A location-driven approach for warehouse location problem. To appear in: J. Oper. Res. Soc. (2020). DOI: 10.1080/01605682.2020.1811790. [Google Scholar]
  • X. Gao and C. Cao, Multi-commodity rebalancing and transportation planning considering traffic congestion and uncertainties in disaster response. Comput. Ind. Eng. 149 (2020) 106782. [Google Scholar]
  • X. Gao and X. Jin, A robust multi-commodity rebalancing process in humanitarian logistics. In: Vol. 591 of Advances in Production Management System, APMS 2020. Springer, Cham (2020). [Google Scholar]
  • X. Gao and G.M. Lee, A stochastic programming model for multi-commodity redistribution planning in disaster response. In: IFIP International Conference on Advances in Production Management Systems. Springer (2018) 67–78. [Google Scholar]
  • X. Gao, Y. Zhou, M.I.H. Amir, F.A. Rosyidah and G.M. Lee, A hybrid genetic algorithm for multi-emergency medical service center location-allocation problem in disaster response. Int. J. Ind. Eng.: Theory App. Pract. 24 (2017) 663–679. [Google Scholar]
  • X. Gao, M.K. Nayeem and I.M. Hezam, A robust two-stage transit-based evacuation model for large-scale disaster response. Measurement 145 (2019) 713–723. [Google Scholar]
  • X. Gao, X. Jin, P. Zheng and C. Cui, Multi-modal transportation planning for multi-commodity rebalancing under uncertainty in humanitarian logistics. Adv. Eng. Inf. 47 (2021) 101223. [Google Scholar]
  • F. Gayraud, N. Grangeon, L. Deroussi and S. Norre, Notation and classification for logistic network design models. RAIRO:OR 49 (2015) 195–214. [Google Scholar]
  • D. Goldfarb, A family of variable-metric methods derived by variational means. Math. Comput. 24 (1970) 23–26. [Google Scholar]
  • G. Guastaroba and M.G. Speranza, A heuristic for BILP problems: the single source capacitated facility location problem. Eur. J. Oper. Res. 238 (2014) 438–450. [Google Scholar]
  • N. Gülpnar, D. Pachamanova and E. Çanakoğlu, Robust strategies for facility location under uncertainty. Eur. J. Oper. Res. 225 (2013) 21–35. [Google Scholar]
  • F.R. Hampel, E.M. Ronchetti, P.J. Rousseeuw and W.A. Stahel, Robust Statistics: The Approach Based on Influence Functions. John Wiley & Sons (2011). [Google Scholar]
  • T.P. Hettmansperger and J.W. McKean, Robust Nonparametric Statistical Methods. CRC Press (2010). [Google Scholar]
  • S.C. Ho, An iterated tabu search heuristic for the single source capacitated facility location problem. Appl. Soft Comput. 27 (2015) 169–178. [Google Scholar]
  • K. Hogan and C. ReVelle, Concepts and applications of backup coverage. Manage. Sci. 32 (1986) 1434–1444. [Google Scholar]
  • R. Ihaka and R. Gentleman, R: a language for data analysis and graphics. J. Comput. Graphical Stat. 5 (1996) 299–314. [Google Scholar]
  • C.A. Irawan, M. Luis, S. Salhi and A. Imran, The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem. Ann. Oper. Res. 275 (2019) 367–392. [Google Scholar]
  • M. Körkel, Discrete facility location with nonlinear facility costs. RAIRO:OR 25 (1991) 31–43. [Google Scholar]
  • E.L. Lehmann, Elements of Large-Sample Theory. Springer Science & Business Media (2004). [Google Scholar]
  • S. Manzour-al-Ajdad, S.A. Torabi and S. Salhi, A hierarchical algorithm for the planar single-facility location routing problem. Comput. Oper. Res. 39 (2012) 461–470. [Google Scholar]
  • E. Moradi and M. Bidkhori, Single facility location problem. In: Facility location. Springer (2009). [Google Scholar]
  • J. Morris, R. Love and G. Wesolowsky, Facilities Location: Models and Methods. North-Holland, New York (1988). [Google Scholar]
  • A. Nadizadeh, R. Sahraeian, A.S. Zadeh and S.M. Homayouni, Using greedy clustering method to solve capacitated location-routing problem. Afr. J. Bus. Manage. 5 (2011) 8470–8477. [Google Scholar]
  • Y. Ohsawa, A geometrical solution for quadratic bicriteria location models. Eur. J. Oper. Res. 114 (1999) 380–388. [Google Scholar]
  • N. Onnela, Determining the optimal distribution center location. Master thesis (2015). [Google Scholar]
  • L. Ouyang, Y. Ma, J. Wang and Y. Tu, A new loss function for multi-response optimization with model parameter uncertainty and implementation errors. Eur. J. Oper. Res. 258 (2017) 552–563. [Google Scholar]
  • L. Ouyang, J. Chen, Y.Z. Ma, C. Park and J. Jin, Bayesian closed-loop robust process design considering model uncertainty and data quality. IIE Trans. (2020) 288–300. [Google Scholar]
  • A.B. Owen, Empirical Likelihood. Chapman and Hall/CRC (2001). [Google Scholar]
  • C. Park, Determination of the joint confidence region of the optimal operating conditions in robust design by the bootstrap technique. Int. J. Prod. Res. 51 (2013) 4695–4703. [Google Scholar]
  • C. Park and M. Leeds, A highly efficient robust design under data contamination. Comput. Ind. Eng. 93 (2016) 131–142. [Google Scholar]
  • M. Parnas and D. Ron, Testing metric properties. Inf. Comput. 187 (2003) 155–195. [Google Scholar]
  • P.J. Rousseeuw and C. Croux, Alternatives to the median absolute deviation. J. Am. Stat. Assoc. 88 (1993) 1273–1283. [CrossRef] [Google Scholar]
  • R. Serfling, Asymptotic relative efficiency in estimation. Int. Encycl. Stat. Sci. 23 (2011) 68–72. [Google Scholar]
  • D.F. Shanno, Conditioning of quasi-Newton methods for function minimization. Math. Comput. 24 (1970) 647–656. [Google Scholar]
  • R.C. Team, R: A language and environment for statistical computing (2019) 201. [Google Scholar]
  • J.W. Tukey, A survey of sampling from contaminated distributions. Contrib. Prob. Stat. (1960) 448–485. [Google Scholar]
  • I. Vazler, K. Sabo and R. Scitovski, Weighted median of the data in solving least absolute deviations problems. Commun. Stat.-Theory Methods 41 (2012) 1455–1465. [Google Scholar]
  • L. Yajie, L. Hongtao, W. Zhiyong and Z. Dezhi, A robust model predictive control approach for post-disaster relief distribution. Comput. Ind. Eng. 135 (2019) 1253–1270. [Google Scholar]
  • M. Zaferanieh, H.T. Kakhki, J. Brimberg and G.O. Wesolowsky, A BSSS algorithm for the single facility location problem in two regions with different norms. Eur. J. Oper. Res. 190 (2008) 79–89. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.