Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 2, March-April 2021
Page(s) 319 - 332
DOI https://doi.org/10.1051/ro/2021022
Published online 23 March 2021
  • M. Chellali, T.W. Haynes, S.T. Hedetniemi and A.A. McRaee, Roman {2}-domination. Discrete Appl. Math. 204 (2016) 22–28. [Google Scholar]
  • E.J. Cockayne, P.A. Dreyer, S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs. Discrete Math. 278 (2004) 11–22. [Google Scholar]
  • G.S. Domke, J.H. Hattingh, S.T. Hedetniemi, R.C. Laskar and L.R. Markus, Restrained domination in graphs. Discrete Math. 203 (1999) 61–69. [Google Scholar]
  • M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York, USA (1979). [Google Scholar]
  • T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs. Marcel Dekker, New York (1998). [Google Scholar]
  • M.A. Henning and W.F. Klostermeyer, Italian domination in trees. Discrete Appl. Math. 217 (2017) 557–564. [Google Scholar]
  • N. Jafari Rad and M. Krzywkowski, On the restrained Roman domination in graphs. Manuscript (2015). [Google Scholar]
  • P.R.L. Pushpam and S. Padmapriea, Restrained Roman domination in graphs. Trans. Comb. 4 (2015) 1–17. [Google Scholar]
  • J.A. Telle and A. Proskurowski, Algorithms for vertex partitioning problems on partial k-trees. SIAM J. Discrete Math. 10 (1997) 529–550. [Google Scholar]
  • D.B. West, Introduction to Graph Theory, 2nd edition. Prentice Hall, USA (2001). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.