Open Access
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1559 - 1578
Published online 11 June 2021
  • R.G. Amin and M. Toloo, Finding the most efficient DMUs in DEA: an improved integrated model. Comput. Ind. Eng. 52 (2007) 71–77. [Google Scholar]
  • P. Andersen and N. Petersen, A procedure for ranking efficient units in data envelopment analysis. Manage. Sci. 30 (1993) 1261–1264. [Google Scholar]
  • K.D. Atalay and A. Apaydin, Şans KisitliStokastik Programlama Problemlerinin Deterministik Eşitlikleri. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi 1 (2011) 1–18. [Google Scholar]
  • M. Azadi and R.F. Saen, A new chance-constrained data envelopment analysis for selection third-party reverse logistics providers in the existence of dual role factors. Expert Syst. App. 38 (2011) 12231–12236. [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating tecnical and scale inefficiencies in data envelopment analysis. Manege. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • Y. Bian and F. Yang, Resource and environment efficiency analysis of provinces in Chine: a DEA approach based on Shannon’s entropy. Energy Policy 38 (2010) 1909–1917. [Google Scholar]
  • J. Borda, Memoire sur les Electin au Scrutin. Histoire de l’Academie Royale des Sciences 1781, Paris 12 (1784). [Google Scholar]
  • J.E. Boscá, V. Liern, A. Martínez and R. Sala, Increasing offensive or defensive efficiency? An analysis of Italian and Spanish football. Omega 37 (2009) 63–78. [Google Scholar]
  • S. Çakir and S. Perçin, AB Ülkelerinde Bütünleşik Entropi Ağirlik-Topsis Yöntemleriyle AR-GE performansinin Ölçülmesi. Uludağ Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 32 (2013) 77–95. [Google Scholar]
  • A. Charnes and W.W. Cooper, Chance-constrained programming. Manage. Sci. 6 (1959) 73–79. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • X. Chen and C.-C. Lu, The impact of the macroeconomic factors in the bank efficiency: evidence from the Chinese city banks. North Am. J. Econ. Finance 55 (2020) 101294. [Google Scholar]
  • Y. Chen, W.D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
  • A. Chitnis and O. Vaidya, Performance assessment of tennis players: application of DEA. Soc. Behav. Sci. 133 (2014) 74–83. [Google Scholar]
  • W.D. Cook and J. Zhu, Classifying inputs and outputs in data envelopment analysis. Eur. J. Oper. Res. 180 (2007) 692–699. [Google Scholar]
  • W.W. Cooper, H. Deng, Z. Huang and S.X. Li, Chance constrained programming approaches to congestion in stochastic data envelopment analysis. Eur. J. Oper. Res. 155 (2004) 487–501. [Google Scholar]
  • W. Cooper, J.L. Ruiz and I. Sirvent, Selecting non-zero weights to evaluate effectiveness of basketball players with DEA. Eur. J. Oper. Res. 195 (2009) 563–574. [Google Scholar]
  • Ö. Cosgun and G. Yurdakul, Performance evaluation of an apparel retailer’s stores by using stochastic imprecise DEA. J. Mult.-Valued Logic Soft Comput. 34 (2020) 59–75. [Google Scholar]
  • M.N. Coşkun, A.H. Çermikli, H.O. Eruygur, F. Öztürk, İ. Tokatlioğlu, G. Aykaç and T. Dağlaroğlu, Türkiye’de Bankacilik Sektörü Piyasa Yapisi, Firma Davranişlarive Rekabet Analizi. Türkiye Bankalar Birliği, İstanbul (2012). [Google Scholar]
  • J. De Gregorio and P.E. Guidotti, Financial development and economic growth. World Dev. 23 (1995) 433–448. [Google Scholar]
  • E. Deliktaş and M. Balcilar, A comparative analysis of productivity growth, catch-up, and convergence in transition economies. Emerg. Markets Finance Trade 41 (2005) 6–28. [Google Scholar]
  • E. Demireli and A.Y. Özdemir, Seçilmiş Avrupa Ülkeleride Makroekonomik Performans Ölçümü: Şans KisitliVeri Zarflama Analizi ile Bir Uygulama. Dumlupinar Üniversitesi Sosyal bilimler Dergisi 37 (2013) 303–330. [Google Scholar]
  • T. Ertay, D. Ruan and U.R. Tuzkaya, Integrating data envelopment analysis and analytic hierarchy for the facility layout design in manufacturing systems. Inf. Sci. 176 (2006) 237–262. [Google Scholar]
  • R. Farzipoor Saen, Suppliers selection in the presence of both cardinal and ordinal data. Eur. J. Oper. Res. 183 (2007) 741–747. [Google Scholar]
  • D.A. Grigorian and V. Manole, Determinants of commercial bank performance in transition: An application of data envelopment analysis. Comp. Econ. Stud. 48 (2006) 497–522. [Google Scholar]
  • P. Guo and H. Tanaka, Fuzzy DEA: a perceptual evaluation method. Fuzzy Set Syst. 119 (2001) 149–160. [Google Scholar]
  • B. Hsiao, C.-C. Chern and C.-R. Chiu, Perdormance evaluation with entropy based weighted Russel measure in data envelopment analysis. Expert Syst. App. 38 (2011) 9965–9972. [Google Scholar]
  • D. Ju-Long, Control Problems of Grey Systems. Syst. Control Lett. 1 (1982) 288–294. [Google Scholar]
  • C. Kao and S.-N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [Google Scholar]
  • K. Kayalidere and S. Kargin, Çimento ve Tekstil Sektöründe Etkinlik Çalişmasive Veri Zarflama Analizi. Doküz Eylül Üniversitesi Sosyal Bilimler Dergisi 6 (2004) 196–219. [Google Scholar]
  • M. Khodabakhshi, A super-efficiency model based on improved outputs in data envelopment analysis. Appl. Math. Comput. 184 (2007) 695–703. [Google Scholar]
  • KPMG, Bankacilik: Sektörel Bakiş. KPMG, İstanbul (2019). [Google Scholar]
  • K.C. Land, C.K. Lovell and S. Thore, Chance-constrained Data Envelopment Analysis. Manage. Decis. Econ. 14 (1993) 541–554. [Google Scholar]
  • H.F. Lewis, K.A. Lock and T.R. Sexton, Organizational capability, efficiency, and effectiveness in Major League Baseball: 1901–2002. Eur. J. Oper. Res. 197 (2009) 731–740. [Google Scholar]
  • J.S. Liua, L.Y. Lub and W.-M. Luc, Research fronts in data envelopment analysis. Omega 58 (2016) 33–45. [Google Scholar]
  • R. Mansour and C. El Moussawi, Efficiency, technical progress and productivity of Arab banks: a non-parametric approach. Q. Rev. Econ. Finance 75 (2020) 191–208. [Google Scholar]
  • E.D. Mecit and İ. Alp, A new restricted model using correlation coefficients as an alternative to cross-efficiency evaluation in Data Envelopment Analysis. Hacettepe J. Math. Stat. 41 (2012) 321–335. [Google Scholar]
  • O.B. Olesen and N.C. Petersen, Stochastic Data Envelopment Analysis: a review. Eur. J. Oper. Res. 251 (2015) 1–20. [Google Scholar]
  • A.D. Ross, K. Kuzu and W. Li, Exploring supplier performance risk and buyer’s role using chance-constraint data envelopment analysis. Eur. J. Oper. Res. 250 (2015) 1–13. [Google Scholar]
  • A.P.S. Rubem and L.C. Brando, Multiple criteria data envelopment analysis – An application to UEFA EURO 2012. Proc. Comput. Sci. 55 (2015) 186–195. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.