Open Access
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 2055 - 2068
Published online 07 July 2021
  • M. Akyüz, I.K. Altinel and T. Öncan, Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem. Ann. Oper. Res. 222 (2014) 45–71. [Google Scholar]
  • M. Alizadeh, I. Mahdavi, S. Shiripour and H. Asadi, A nonlinear model for a capacitated location-allocation problem with Bernoulli demand using sub-sources. Int. J. Eng. Trans. B: App. 26 (2013) 1007–1016. [Google Scholar]
  • M. Alizadeh, I. Mahdavi, N. Mahdavi-Amiri and S. Shiripour, A capacitated location-allocation problem with stochastic demands using sub-sources: an empirical study. Appl. Soft Comput. 34 (2015) 551–571. [Google Scholar]
  • N. Aras, I.K. Altinel and M. Orbay, New heuristic methods for the capacitated multi-facility Weber problem. Nav. Res. Logist. 54 (2007) 21–32. [Google Scholar]
  • N. Aras, S. Yumusak and I.K. Altinel, Solving the capacitated multi-facility Weber problem by simulated annealing, threshold accepting and genetic algorithms, edited by K.F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R.F. Hartl and M. Reimann. In: Metaheuristics: Progress in Complex Systems Optimization. Springer, US (2007) 91–112. [Google Scholar]
  • N. Aras, M. Orbay and I.K. Altinel, Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem. J. Oper. Res. Soc. 59 (2008) 64–79. [Google Scholar]
  • J. Brimberg and S. Salhi, A continuous location-allocation problem with zone-dependent fixed cost. Ann. Oper. Res. 136 (2005) 99–115. [Google Scholar]
  • J. Brimberg, P. Hansen, N. Mladenović and E.D. Taillard, Improvements and comparison of heuristics for solving the uncapacitated multisource Weber problem. Oper. Res. 48 (2000) 444–460. [Google Scholar]
  • J. Brimberg, N. Mladenović and S. Salhi, The multi-source Weber problem with constant opening cost. J. Oper. Res. Soc. 55 (2004) 640–646. [Google Scholar]
  • J. Brimberg, P. Hansen, N. Mladenović and S. Salhi, A survey of solution methods for the continuous location-allocation problem. Int. J. Oper. Res. 5 (2018) 1–12. [Google Scholar]
  • L. Cooper, The transportation-location problem. Oper. Res. 20 (1972) 94–108. [Google Scholar]
  • M. Daskin, Network and Discrete Location – Models, Algorithms and Applications. John Wiley & Sons, Inc. (1995). [Google Scholar]
  • A. Elalouf, D. Tsadikovich and S. Hovav, Optimization of blood sample collection with timing and quality constraints. Int. Trans. Oper. Res. 25 (2018) 191–214. [Google Scholar]
  • M.D.H. Gamal and S. Salhi, Constructive heuristics for the uncapacitated continuous location-allocation problem. J. Oper. Res. Soc. 52 (2001) 821–829. [Google Scholar]
  • M. Gamal and S. Salhi, A cellular heuristic for the multisource Weber problem. Comput. Oper. Res. 30 (2003) 1609–1624. [Google Scholar]
  • P. Hansen, N. Mladenović and E. Taillard, Heuristic solution of the multisource Weber problem as a p-median problem. Oper. Res. Lett. 22 (1998) 55–62. [Google Scholar]
  • S.J. Hosseininezhad, M.S. Jabalameli and S.G.J. Naini, A fuzzy algorithm for continuous capacitated location allocation model with risk consideration. Appl. Math. Model. 38 (2014) 983–1000. [Google Scholar]
  • S.J. Hosseininezhad, S. Salhi and M.S. Jabalameli, A cross entropy-based heuristic for the capacitated multi-source Weber problem with facility fixed cost. Comput. Ind. Eng. 83 (2015) 151–158. [Google Scholar]
  • C.A. Irawan, S. Salhi, M. Luis and N. Azizi, The continuous single source location problem with capacity and zone-dependent fixed cost: models and solution approaches. Eur. J. Oper. Res. 263 (2017) 94–107. [Google Scholar]
  • C.A. Irawan, M. Luis, S. Salhi and A. Imran, The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem. Ann. Oper. Res. 275 (2019) 367–392. [Google Scholar]
  • C.A. Irawan, S. Salhi and K. Soemadi, The continuous single-source capacitated multi-facility Weber problem with setup costs: formulation and solution methods. J. Glob. Optim. 78 (2020) 271–294. [Google Scholar]
  • H.W. Kuhn, A note on Fermat’s problem. Math. Program. 4 (1973) 98–107. [Google Scholar]
  • C.L. Lara, F. Trespalacios and I.E. Grossmann, Global optimization algorithm for capacitated multi-facility continuous location-allocation problems. J. Glob. Optim. 71 (2018) 871–889. [Google Scholar]
  • M. Luis, S. Salhi and G. Nagy, Region-rejection based heuristics for the capacitated multi-source Weber problem. Comput. Oper. Res. 36 (2009) 2007–2017. [Google Scholar]
  • M. Luis, S. Salhi and G. Nagy, A guided reactive GRASP for the capacitated multi-source Weber problem. Comput. Oper. Res. 38 (2011) 1014–1024. [Google Scholar]
  • M. Luis, S. Salhi and G. Nagy, A constructive method and a guided hybrid grasp for the capacitated multi-source Weber problem in the presence of fixed cost. J. Algorithms Comput. Tech. 9 (2015) 215–232. [Google Scholar]
  • M. Luis, C. Irawan and A. Imran, A two-stage method for the capacitated multi-facility location-allocation problem. Int. J. Oper. Res. 35 (2019) 366–377. [Google Scholar]
  • H. Manzour, A. Torabi and M.S. Pishvaee, New heuristic methods for the single-source capacitated multi facility Weber problem. Int. J. Adv. Manuf. Technol. 69 (2013) 1569–1579. [Google Scholar]
  • S.M.H. Manzour-al-Ajdad, S.A. Torabi and K. Eshghi, Single-source capacitated multi-facility Weber problem – an iterative two phase heuristic algorithm. Comput. Oper. Res. 39 (2012) 1465–1476. [Google Scholar]
  • N. Mohammadi, M.R. Malek and A.A. Alesheikh, A new GA based solution for capacitated multi source Weber problem. Int. J. Comput. Intell. Syst. 3 (2010) 514–521. [Google Scholar]
  • S.M. Mousavi and S.T.A. Niaki, Capacitated location allocation problem with stochastic location and fuzzy demand: a hybrid algorithm. Appl. Math. Model. 37 (2013) 5109–5119. [Google Scholar]
  • M. Mousazadeh, S.A. Torabi, M.S. Pishvaee and F. Abolhassani, Health service network design: a robust possibilistic approach. Int. Trans. Oper. Res. 25 (2018) 337–373. [Google Scholar]
  • T. Öncan, Heuristics for the single source capacitated multi-facility Weber problem. Comput. Ind. Eng. 64 (2013) 959–971. [Google Scholar]
  • D. Ozgen and B. Gulsun, Combining possibilistic linear programming and fuzzy AHP for solving the multi-objective capacitated multi-facility location problem. Inf. Sci. 268 (2014) 185–201. [Google Scholar]
  • H.D. Sherali and C.H. Tuncbilek, A squared-euclidean distance location-allocation problem. Nav. Res. Logist. 39 (1992) 447–469. [Google Scholar]
  • H.D. Sherali, S. Ramachandran and S. Kim, A localization and reformulation discrete programming approach for the rectilinear distance location-allocation problem. Discrete Appl. Math. 49 (1994) 357–378. [Google Scholar]
  • H.D. Sherali, I. Al-Loughani, S. Subramanian, Global optimization procedures for the capacitated euclidean and lp distance multifacility location-allocation problems. Oper. Res. 50 (2002) 433–448. [Google Scholar]
  • C. Singhtaun and P. Charnsethikul, Efficient heuristics for single-source capacitated multi-facility Weber problems. In: Proceedings of the 38th International Conference on Computers and Industrial Engineering (2008). [Google Scholar]
  • E.B. Tirkolaee, J. Mahmoodkhani, M.R. Bourani and R. Tavakkoli-Moghaddam, A self-learning particle swarm optimization for robust multi-echelon capacitated location–allocation–inventory problem. Int. J. Adv. Manuf. Technol. 18 (2019) 677–694. [Google Scholar]
  • E.B. Tirkolaee, I. Mahdavi, M.M.S. Esfahani and G.-W. Weber, A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty. Waste Manage. 102 (2020) 340–350. [Google Scholar]
  • E.B. Tirkolaee, P. Abbasian and G.-W. Weber, Sustainable fuzzy multi-trip location-routing problem for medical waste management during the COVID-19 outbreak. Sci. Total Environ. 756 (2021) 143607. [CrossRef] [PubMed] [Google Scholar]
  • Z. Zainuddin and S. Salhi, A perturbation-based heuristic for the capacitated multisource Weber problem. Eur. J. Oper. Res. 179 (2007) 1194–1207. [Google Scholar]
  • J. Zhou and B. Liu, New stochastic models for capacitated location-allocation problem. Comput. Ind. Eng. 45 (2003) 111–125. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.