Open Access
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1643 - 1674
Published online 17 June 2021
  • B. AIMMS, AIMMS Modeling Guide-Integer Programming Tricks. In: Pinedo, Michael. Scheduling: theory, algorithms, and systems. Haarlem, The Netherlands: AIMMS BV. Springer. Retrieved from (2016). [Google Scholar]
  • S.F. Alamdar, M. Rabbani and J. Heydari, Pricing, collection, and effort decisions with coordination contracts in a fuzzy, three-level closed-loop supply chain. Expert Syst. Appl. 104 (2018) 261–276. [Google Scholar]
  • C. Audet, J. Bigeon, D. Cartier, S. Le Digabel and L. Salomon, Performance indicators in multiobjective optimization. Eur. J. Oper. Res. 292 (2020) 397–422. [Google Scholar]
  • C. Babbar and S.H. Amin, A multi-objective mathematical model integrating environmental concerns for supplier selection and order allocation based on fuzzy QFD in beverages industry. Expert Syst. Appl. 92 (2018) 27–38. [Google Scholar]
  • K. Deb and H. Jain, An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18 (2013) 577–601. [Google Scholar]
  • K. Deb, S. Agrawal, A. Pratap, T. Meyarivan and A. Fast, A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization: NSGA-II. Int.Conf. Parallel Prob. Solving Nat. (pp. 849–858). Springer: Berlin, Heidelberg (2000). [Google Scholar]
  • K. Deb, A. Pratap, S. Agarwal and T.A. Meyarivan, A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6 (2002) 182–197. [Google Scholar]
  • S. Deng, Y. Li, H. Guo and B. Liu, Solving a closed-loop location-inventory-routing problem with mixed quality defects returns in e-commerce by hybrid ant colony optimization algorithm. Discrete Dyn. Nat. Soc. 2016 (2016) 12. [Google Scholar]
  • M.B. Fakhrzad and F. Goodarzian, A fuzzy multi-objective programming approach to develop a green closed-loop supply chain network design problem under uncertainty: modifications of imperialist competitive algorithm. RAIRO-Operations Research 53 (2019) 963–990. [EDP Sciences] [Google Scholar]
  • F. Forouzanfar, R. Tavakkoli-Moghaddam, M. Bashiri and A. Baboli, A new bi-objective model for a closed-loop supply chain problem with inventory and transportation times. Sci. Iranica. 23 (2016) 1441–1458. [Google Scholar]
  • J. Ghahremani-Nahr, R. Kian and E. Sabet, A robust fuzzy mathematical programming model for the closed-loop supply chain network design and a whale optimization solution algorithm. Expert Syst. Appl. 116 (2019) 454–471. [Google Scholar]
  • A. Ghodratnama, F. Jolai and R. Tavakkoli-Moghaddam, Solving a new multi-objective multi-route flexible flow line problem by multi-objective particle swarm optimization and NSGA-II. J. Manuf. Syst. 36 (2015) 189–202. [Google Scholar]
  • B.C. Giri and S.K. Dey, Game theoretic analysis of a closed-loop supply chain with backup supplier under dual channel recycling. Comput. Ind. Eng. 129 (2019) 179–191. [Google Scholar]
  • K. Govindan, H. Soleimani and D. Kannan, Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. Eur. J. Oper. Res. 240 (2015) 603–626. [Google Scholar]
  • J. Heydari, K. Govindan and A. Jafari, Reverse and closed loop supply chain coordination by considering government role. Transp. Res. D: Transp. Environ. 52 (2017) 379–398. [Google Scholar]
  • S. Hosseini, TechShamim. Retrieved from: (2019). [Google Scholar]
  • G. Iassinovskaia, S. Limbourg and F. Riane, The inventory-routing problem of returnable transport items with time windows and simultaneous pickup and delivery in closed-loop supply chains. Int. J. Prod. Econ. 183 (2017) 570–582. [Google Scholar]
  • H. Jafari, S.R. Hejazi and M. Rasti-Barzoki, Sustainable development by waste recycling under a three-echelon supply chain: A game-theoretic approach. J. Cleaner Prod. 142 (2017) 2252–2261. [Google Scholar]
  • G. Liu and S. Xu, Multiperiod supply chain network equilibrium model with electronic commerce and multicriteria decisionmaking. RAIRO-Operations Research-Recherche Opérationnelle 3 (2012) 253–287. [Google Scholar]
  • B. Liu, H. Chen, Y. Li and X. Liu, A pseudo-parallel genetic algorithm integrating simulated annealing for stochastic location-inventory-routing problem with consideration of returns in e-commerce. Discrete Dyn. Nat. Soc. 2015 (2015) 372–381. [Google Scholar]
  • E.J. Mamaghani and S. Davari, The bi-objective periodic closed loop network design problem. Exp. Syst. Appl. 144 (2020) 113068. [Google Scholar]
  • R.T. Marler and J.S. Arora, Survey of multi-objective optimization methods for engineering. Structural and multidisciplinary optimization 26 (2004) 369–395. [Google Scholar]
  • Z. Mohtashami, A. Aghsami and F. Jolai, A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption. J. Cleaner Prod. 242 (2020) 118452. [Google Scholar]
  • E. Özceylan, T. Paksoy and T. Bektaş, Modeling and optimizing the integrated problem of closed-loop supply chain network design and disassembly line balancing. Transp. Res. E: Logistics Transp. Rev. 61 (2014) 142–164. [Google Scholar]
  • M.S. Pishvaee, R.Z. Farahani and W. Dullaert, A memetic algorithm for bi-objective integrated forward/reverse logistics network design. Comput. Oper. Res. 6 (2010) 1100–1112. [Google Scholar]
  • M.S. Pishvaee, M. Rabbani and S.A. Torabi, A robust optimization approach to closed-loop supply chain network design under uncertainty. Appl. Math. Model. 35 (2011) 637–649. [Google Scholar]
  • M. Ramezani, M. Bashiri and R. Tavakkoli-Moghaddam, A robust design for a closed-loop supply chain network under an uncertain environment. Int. J. Adv. Manuf. Technol. 66 (2013) 825–843. [Google Scholar]
  • S.J. Sadjadi, M. Heidari and A.A. Esboei, Augmented ε-constraint method in multiobjective staff scheduling problem: a case study. Int. J. Adv. Manuf. Technol. 70 (2014) 1505–1514. [Google Scholar]
  • R.C. Savaskan, S. Bhattacharya and L.N. Van Wassenhove, Closed-loop supply chain models with product remanufacturing. Manage. Sci. 50 (2004) 239–252. [Google Scholar]
  • J.T. Shiau and F.C. Wu, Compromise programming methodology for determining instream flow under multiobjective water allocation criteria 1. JAWRA J. Am. Water Resour. Assoc. 42 (2006) 1179–1191. [Google Scholar]
  • N. Srinivas and K. Deb, Muiltiobjective optimization using nondominated sorting in genetic algorithms. Evol. Comput. 2 (1994) 221–248. [Google Scholar]
  • T.J. Strader and M.J. Shaw, Characteristics of electronic markets. Decis. Support Syst. 21 (1997) 185–198. [Google Scholar]
  • R. Tavakkoli-Moghaddam, M. Yadegari and G. Ahmadi, Closed-loop supply chain inventory-location problem with spare parts in a multi-modal repair condition. Int. J. Eng. 31 (2018) 346–356. [Google Scholar]
  • J.H. Yi, S. Deb, D.J. Alavi and G.G. Wang, An improved NSGA-III algorithm with adaptive mutation operator for Big Data optimization problems. Future Gener. Comput. Syst. 88 (2018) 571–585. [Google Scholar]
  • Y. Yuan, H. Xu and B. Wang, An improved NSGA-III procedure for evolutionary many-objective optimization. In: Proceedings of the 2014 annual conference on genetic and evolutionary computation (2014) 661–668. [Google Scholar]
  • M. Zhalechian, R. Tavakkoli-Moghaddam, B. Zahiri and M. Mohammadi, Sustainable design of a closed-loop location-routing-inventory supply chain network under mixed uncertainty. Transp. Res. E: Logistics and Transp. Rev. 89 (2016) 182–214. [Google Scholar]
  • M. Zhang, S. Pratap, G.Q. Huang and Z. Zhao, Optimal collaborative transportation service trading in B2B e-commerce logistics. Int. J. Prod. Research. 55 (2017) 5485–5501. [Google Scholar]
  • A. Zhou, B.Y. Qu, H. Li, S.Z. Zhao, P.N. Suganthan and Q. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art. Swarm Evol. Comput. 1 (2011) 32–49. [Google Scholar]
  • M. Zohal and H. Soleimani, Developing an ant colony approach for green closed-loop supply chain network design: a case study in gold industry. J. Cleaner Prod. 133 (2016) 314–337. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.