Free Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 3, May-June 2021
Page(s) 1441 - 1457
DOI https://doi.org/10.1051/ro/2021057
Published online 08 June 2021
  • F. Al-Hawari, M. Al-Ashi, F. Abawi and S. Alouneh, A practical three-phase ilp approach for solving the examination timetabling problem. Int. Trans. Oper. Res. 27 (2020) 924–944. [Google Scholar]
  • C. Almeder, A hybrid optimization approach for multi-level capacitated lot-sizing problems. Eur. J. Oper. Res. 200 (2010) 599–606. [Google Scholar]
  • J. Bérubé, M. Gendreau and J. Potvin, A branch-and-cut algorithm for the undirected prize collecting traveling salesman problem. Networks: An Int. J. 54 (2009) 56–67. [Google Scholar]
  • S.A. Canuto, M.G.C. Resende and C.C. Ribeiro, Local search with perturbations for the prize-collecting Steiner tree problem in graphs. Networks: An Int. J. 38 (2001) 50–58. [Google Scholar]
  • G. Climaco, Prize-collecting covering tour problem (Data Set). Mendeley Data, V1, (2020). https://doi.org/10.17632/8yjbfgcfvn.1. [Google Scholar]
  • G. Climaco, Prize-collecting covering tour problem (Complete Results). Mendeley Data, V2 (2021). https://doi.org/10.17632/8yjbfgcfvn.2. [Google Scholar]
  • G. Clmaco, I. Rosseti, L. Simonetti and M. Guerine, Combining integer linear programming with a state-of-the-art heuristic for the 2-path network design problem. Int. Trans. Oper. Res. 26 (2019) 615–641. [Google Scholar]
  • J.R. Current and D.A. Schilling, The covering salesman problem. Transp. Sci. 23 (1989) 208–213. [Google Scholar]
  • A.D. Ebrahimi and R. Sahraeian, The maximal backup covering tour problem. In: 6th International Conference on Industrial Engineering and Industrial Management, Vigo, Spain (2012) 367–374. [Google Scholar]
  • D.A. Flores-Garza, M.A. Salazar-Aguilar, S.U. Ngueveu and G. Laporte, The multi-vehicle cumulative covering tour problem. Ann. Oper. Res. 258 (2017) 761–780. [Google Scholar]
  • M. Gendreau, A. Hertz and G. Laporte, New insertion and postoptimization procedures for the traveling salesman problem. Oper. Res. 40 (1992) 1086–1094. [Google Scholar]
  • M. Gendreau, G. Laporte and F. Semet, The covering tour problem. Oper. Res. 45 (1997) 568–576. [Google Scholar]
  • Gurobi Optimization, Gurobi optimizer reference manual (2019). Last accessed on December 10, 2019. [Google Scholar]
  • M. Hachicha, M.J. Hodgson, G. Laporte and F. Semet, Heuristics for the multi-vehicle covering tour problem. Comput. Oper. Res. 27 (2000) 29–42. [Google Scholar]
  • M. Hamidi, K. Farahmand, S. Reza and K.E. Nygard, A hybrid grasp-tabu search metaheuristic for a four-layer location-routing problem. Int. J. Logist. Syst. Manag. 12 (2012) 267–287. [Google Scholar]
  • N. Jozefowiez, F. Semet and E. Talbi, The bi-objective covering tour problem. Comput. Oper. Res. 34 (2007) 1929–1942. [Google Scholar]
  • I. Karaoğlan, G. Erdoğan and Ç. Koç, The multi-vehicle probabilistic covering tour problem. Eur. J. Oper. Res. 271 (2018) 278–287. [Google Scholar]
  • H.R. Lourenço, O.C. Martin and T. Stützle, Iterated local search. In: Handbook of metaheuristics, edited by J.-Y. Potvin, M. Gendreau. Springer, Boston, MA (2003) 320–353. [Google Scholar]
  • A.R. de Lyra, O problema de recobrimento de rotas com coleta de prêmios: regras de redução, formulação matemática e heursticas (in portuguese), Master’s thesis, Programa de Pós-Graduação em Computao, Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ (2004). [Google Scholar]
  • N. Mladenović and P. Hansen, Variable neighborhood search. Comput. Oper. Res. 24 (1997) 1097–1100. [Google Scholar]
  • C. Park and J. Seo, A grasp approach to transporter scheduling for ship assembly block operations management. Eur. J. Indus. Eng. 7 (2013) 312–332. [Google Scholar]
  • T.A. Pham, M. Hà and X.H. Nguyen, Solving the multi-vehicle multi-covering tour problem. Comput. Oper. Res. 88 (2017) 258–278. [Google Scholar]
  • M. Prais and C.C. Ribeiro, Reactive grasp: An application to a matrix decomposition problem in TDMA traffic assignment. INFORMS J. Comput. 12 (2000) 164–176. [Google Scholar]
  • R Core Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2017). [Google Scholar]
  • G. Reinelt, TSPLIB – a traveling salesman problem library. ORSA J. Comput. 3 (1991) 376–384. [Google Scholar]
  • M.G.C. Resende and C.C. Ribeiro, Greedy randomized adaptive search procedures. In: Handbook of Metaheuristics, edited by F. Glover and G. Kochenberger. Springer, Boston, MA (2003) 219–249. [Google Scholar]
  • Í. Santana, A. Plastino and I. Rosseti, Improving a state-of-the-art heuristic for the minimum latency problem with data mining. Int. Trans. Oper. Res. (2020). DOI: 10.1111/itor.12774. [Google Scholar]
  • S. Siegel, Nonparametric statistics for the behavioral sciences. McGraw-Hill (1956). [Google Scholar]
  • M.S.A. Silva, Problema de Recobrimento de Rotas com Coleta de Prêmios (in portuguese), Master’s thesis, Programa de Pós-Graduação em Computao, Instituto de Computao, Instituto de Computação, Universidade Federal Fluminense, Niterói, RJ (2009). [Google Scholar]
  • B. Sylvain, H. Hideki, V. Michel and W. Christophe, Un algorithme grasp pour le problème de planification de techniciens et d’interventions pour les télécommunications. RAIRO: OR 43 (2009) 387–407. [Google Scholar]
  • D. Trachanatzi, M. Rigakis, M. Marinaki and Y. Marinakis, A firefly algorithm for the environmental prize-collecting vehicle routing problem. Swarm Evol. Comput. 57 (2020). [Google Scholar]
  • F. Tricoire, A. Graf and W.J. Gutjahr, The bi-objective stochastic covering tour problem. Comput. Oper. Res. 39 (2012) 1582–1592. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.