Open Access
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Page(s) 2181 - 2188
Published online 14 July 2021
  • T. Antczak, Y. Pandey, V. Singh and S.K. Mishra, On approximate efficiency for nonsmooth robust vector optimization problems. Acta Math. Sci. 40 (2020) 887–902. [Google Scholar]
  • A. Beck and A. Ben-Tal, Duality in robust optimization: primal worst equals dual best. Oper. Res. Lett. 37 (2009) 1–6. [Google Scholar]
  • D. Bertsimas, D.B. Brown and C. Caramanis, Theory and applications of robust optimization. SIAM Rev. 53 (2011) 464–501. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Chen, E. Köbis and J.-C. Yao, Optimality conditions and duality for robust nonsmooth multiobjective optimization problems with constraints. J. Optim. Theory Appl. 181 (2019) 411–436. [Google Scholar]
  • T.D. Chuong, Optimality and duality for robust multiobjective optimization problems. Nonlinear Anal. 134 (2016) 127–143. [Google Scholar]
  • F.H. Clarke, Optimization and Nonsmooth Analysis. John Wiley & Sons, New York (1983). [Google Scholar]
  • K. Deb and H. Gupta, Introducing robustness in multi-objective optimization. Evol. Comput. 14 (2006) 463–494. [PubMed] [Google Scholar]
  • N. Dinh, M.A. Goberna, M.A. López and M. Volle, Convexity and closedness in stable robust duality. Optim. Lett. 13 (2019) 325–339. [Google Scholar]
  • E.K. Doolittle, H.L.M. Kerivin and M.M. Wiecek, Robust multiobjective optimization with application to internet routing. Ann. Oper. Res. 271 (2018) 487–525. [Google Scholar]
  • M. Ehrgott, J. Ide and A. Schöbel, Minmax robustness for multi-objective optimization problems. Eur. J. Oper. Res. 239 (2014) 17–31. [Google Scholar]
  • M. Fakhar, M.R. Mahyarinia and J. Zafarani, On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization. Eur. J. Oper. Res. 265 (2018) 39–48. [Google Scholar]
  • M. Goerigk, M. Schmidt, A. Schöbel, M. Knoth and M. Müller-Hannemann, The price of strict and light robustness in timetable information. Transp. Sci. 48 (2014) 225–242. [Google Scholar]
  • J. Ide and E. Köbis, Concepts of efficiency for uncertain multi-objective optimization problems based on set order relations. Math. Methods Oper. Res. 80 (2014) 99–127. [Google Scholar]
  • V. Jeyakumar, G. Li and G.M. Lee, Robust duality for generalized convex programming problems under data uncertainty. Nonlinear Anal. 75 (2012) 1362–1373. [Google Scholar]
  • I. Kecskés and P. Odry, Robust optimization of multi-scenario many-objective problems with auto-tuned utility function. Eng. Optim. (2020) 1–21. [Google Scholar]
  • D. Kuroiwa and G.M. Lee, On robust multiobjective optimization. Vietnam J. Math. 40 (2012) 305–317. [Google Scholar]
  • J.H. Lee and G.M. Lee, On optimality conditions and duality theorems for robust semi-infinite multiobjective optimization problems. Ann. Oper. Res. 269 (2018) 419–438. [Google Scholar]
  • S.K. Suneja, S. Khurana and M. Bhatia, Optimality and duality in vector optimization involving generalized type I functions over cones. J. Glob. Optim. 49 (2011) 23–35. [Google Scholar]
  • S. Wang, Z. Chen and T. Liu, Distributionally robust hub location. Transp. Sci. 54 (2020) 1189–1210. [Google Scholar]
  • C. Xu, Y. Chai, S. Qin, Z. Wang and J. Feng, A neurodynamic approach to nonsmooth constrained pseudoconvex optimization problem. Neural Netw. 124 (2020) 180–192. [PubMed] [Google Scholar]
  • Y. Yang, M. Pesavento, S. Chatzinotas and B. Ottersten, Energy efficiency optimization in MIMO interference channels: a successive pseudoconvex approximation approach. IEEE Trans. Signal Process. 67 (2019) 4107–4121. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.