Open Access
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Page(s) 2583 - 2598
Published online 31 August 2021
  • S. Ang, P. Liu and F. Yang, Intra-Organizational and inter-organizational resource allocation in two stage network systems. Omega 91 (2020) 102009. [Google Scholar]
  • M. Asmild, J.C. Paradi and J.T. Pastor, Centralized resource allocation BCC models. Omega 37 (2009) 40–49. [Google Scholar]
  • A.D. Athanassopoulos, Goal programming & data envelopment analysis (GoDEA) for target-based multi-level planning: allocating central grants to the Greek local authorities. Eur. J. Oper. Res. 87 (1995) 535–550. [Google Scholar]
  • A.D. Athanassopoulos, Decision support for target-based resource allocation of public services in multiunit and multilevel systems. Manage. Sci. 44 (1998) 173–187. [Google Scholar]
  • S. Aviles-Sacoto, W.D. Cook, R. Imanirad and J. Zhu, Two-stage network DEA: when intermediate measures can be treated as outputs from the second stage. J. Oper. Res. Soc. 66 (2015) 1868–1877. [Google Scholar]
  • R.D. Banker, A. Charnes and W.W. Cooper, Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manage. Sci. 30 (1984) 1078–1092. [Google Scholar]
  • J. Beasley, Allocating fixed costs and resources via data envelopment analysis. Eur. J. Oper. Res. 147 (2003) 198–216. [CrossRef] [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functionals. Naval Res. Logistics Q. 9 (1962) 181–186. [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • Y. Chen and J. Zhu, Measuring information technology’s indirect impact on firm performance. Inf. Technol. Manage. 5 (2004) 9–22. [Google Scholar]
  • Y. Chen, W.D. Cook and J. Zhu, Deriving the DEA frontier for two-stage processes. Eur. J. Oper. Res. 202 (2010) 138–142. [Google Scholar]
  • Y. Chen, J. Du, H.D. Sherman and J. Zhu, DEA model with shared resources and efficiency decomposition. Eur. J. Oper. Res. 207 (2010) 339–349. [CrossRef] [Google Scholar]
  • M.-C. Chen, M.-M. Yu and Y.-T. Ho, Using network centralized data envelopment analysis for shipping line resource allocation. Int. J. Environ. Sci. Technol. 15 (2018) 1777–1792. [Google Scholar]
  • T. Ding, J. Yang, H. Wu, Y. Wen, C. Tan and L. Liang, Research performance evaluation of Chinese university: a non-homogeneous network DEA approach. J. Manage. Sci. Eng. in press (2020). DOI: 10.1016/j.jmse.2020.10.003. [Google Scholar]
  • J. Du, L. Liang, Y. Chen and G.-B. Bi, DEA-based production planning. Omega 38 (2010) 105–112. [CrossRef] [Google Scholar]
  • A. Emrouznejad, B.R. Parker and G. Tavares, Evaluation of research in efficiency and productivity: a survey and analysis of the first 30 years of scholarly literature in DEA. Soc.-Econ. Plann. Sci. 42 (2008) 151–157. [Google Scholar]
  • A. Emrouznejad and G.-L. Yang, A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016. Soc.-Econ. Plan. Sci. 61 (2018) 4–8. [Google Scholar]
  • L. Fang and C. Zhang, Resource allocation based on the DEA model. J. Oper. Res. Soc. 59 (2008) 1136–1141. [Google Scholar]
  • R. Färe, R. Grabowski, S. Grosskopf and S. Kraft, Efficiency of a fixed but allocatable input: a non-parametric approach. Econ. Lett. 56 (1997) 187–193. [Google Scholar]
  • R. Färe, S. Grosskopf and G. Whittaker, Network dea. In: Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis (2007) 209–240. [Google Scholar]
  • M.J. Farrell, The measurement of productive efficiency. J. R. Stat. Soc.: Ser. A (General) 120 (1957) 253–281. [CrossRef] [Google Scholar]
  • B. Golany, F. Phillips and J. Rousseau, Models for improved effectiveness based on DEA efficiency results. IIE Trans. 25 (1993) 2–10. [Google Scholar]
  • B. Golany and E. Tamir, Evaluating efficiency-effectiveness-equality trade-offs: a data envelopment analysis approach. Manage. Sci. 41 (1995) 1172–1184. [Google Scholar]
  • S.S. Hosseini, R. Kazemi Matin, M. Khunsiavash and Z. Moghadas, Measurement of productivity changes for general network production systems with stochastic data. Sādhanā 44 (2019) 72. [Google Scholar]
  • C. Kao and S.-N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: an application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [CrossRef] [Google Scholar]
  • P. Korhonen and M. Syrjänen, Resource allocation based on efficiency analysis. Manage. Sci. 50 (2004) 1134–1144. [Google Scholar]
  • H.F. Lewis and T.R. Sexton, Network DEA: efficiency analysis of organizations with complex internal structure. Comput. Oper. Res. 31 (2004) 1365–1410. [CrossRef] [Google Scholar]
  • S. Lozano and G. Villa, Centralized resource allocation using data envelopment analysis. J. Prod. Anal. 22 (2004) 143–161. [Google Scholar]
  • S. Lozano and G. Villa, Centralized DEA models with the possibility of downsizing. J. Oper. Res. Soc. 56 (2005) 357–364. [Google Scholar]
  • S. Lozano, G. Villa and R. Brännlund, Centralised reallocation of emission permits using DEA. Eur. J. Oper. Res. 193 (2009) 752–760. [Google Scholar]
  • S. Lozano, G. Villa and D. Canca, Application of centralised DEA approach to capital budgeting in Spanish ports. Comput. Ind. Eng. 60 (2011) 455–65. [Google Scholar]
  • C. Mar-Molinero, D. Prior, M.-M. Segovia and F. Portillo, On centralized resource utilization and its reallocation by using DEA. Ann. Oper. Res. 221 (2014) 273–283. [Google Scholar]
  • J.T. Pastor, J.L. Ruiz and I. Sirvent, An enhanced DEA Russell graph efficiency measure. Eur. J. Oper. Res. 115 (1999) 596–607. [Google Scholar]
  • V. Patrizii, On network two stages variable returns to scale DEA models. Omega 97 (2020) 102084. [Google Scholar]
  • A.E. Ripoll-Zarraga and S. Lozano, A centralised DEA approach to resource reallocation in Spanish airports. Ann. Oper. Res. 288 (2020) 701–732. [Google Scholar]
  • L.M. Seiford and J. Zhu, Profitability and marketability of the top 55 US commercial banks. Manage. Sci. 45 (1999) 1270–1288. [Google Scholar]
  • J. Song, F. Wei, J. Chu, Q. Zhu and F. Yang, Allocating natural resource reduction amounts: a data envelopment analysis based-approach considering production technology heterogeneity. Expert Syst. 36 (2019) e12449. [Google Scholar]
  • C.H. Wang, R.D. Gopal and S. Zionts, Use of data envelopment analysis in assessing information technology impact on firm performance. Ann. Oper. Res. 73 (1997) 191–213. [Google Scholar]
  • G.-L. Yang, H. Fukuyama and Y.-Y. Song, Measuring the inefficiency of Chinese research universities based on a two-stage network DEA model. J. Inf. 12 (2018) 10–30. [Google Scholar]
  • M.-M. Yu, C.-C. Chern and B. Hsiao, Human resource rightsizing using centralized data envelopment analysis: evidence from Taiwan’s Airports. Omega 41 (2013) 119–130. [Google Scholar]
  • Y. Zha and L. Liang, Two-stage cooperation model with input freely distributed among the stages. Eur. J. Oper. Res. 205 (2010) 332–338. [CrossRef] [Google Scholar]
  • T. Zhang, Y.-H. Chiu, Y. Li and T.-Y. Lin, Air pollutant and health-efficiency evaluation based on a dynamic network data envelopment analysis. Int. J. Environ. Res. Publ. Health 15 (2018) 2046. [Google Scholar]
  • J. Zhu, Multi-factor performance measure model with an application to Fortune 500 companies. Eur. J. Oper. Res. 123 (2000) 105–124. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.