Open Access
RAIRO-Oper. Res.
Volume 55, Number 4, July-August 2021
Page(s) 2309 - 2335
Published online 02 August 2021
  • O. Abdolazimi and A. Abraham, Designing a multi-objective supply chain model for the oil indus-try in conditions of uncertainty and solving it by meta-heuristic algorithms (2020). [Google Scholar]
  • O. Abdolazimi, M. Salehi Esfandarani, M. Salehi and D. Shishebori, A comparison of solution methods for the multi-objective closed loop supply chains. Adv. Ind. Eng. 54 (2020) 75–98. [Google Scholar]
  • O. Abdolazimi, M.S. Esfandarani, M. Salehi and D. Shishebori, Robust design of a multi-objective closed-loop supply chain by integrating on-time delivery cost and environmental aspects case study of a Tire Factory. J. Cleaner Prod. 264 (2020) 121566. [Google Scholar]
  • O. Abdolazimi, M.S. Esfandarani and A. Abraham, Design of a closed supply chain with regards to the social and environmental impacts under uncertainty (2020). [Google Scholar]
  • O. Abdolazimi, M.S. Esfandarani and D. Shishebori, Design of a supply chain network for determining the optimal number of items at the inventory groups based on ABC analysis: a comparison of exact and meta-heuristic methods. Neural Comput. Appl. 33 (2021) 6641–6656. [Google Scholar]
  • A. Ahmadi-Javid and P. Hoseinpour, A location-inventory-pricing model in a supply chain distribution network with price-sensitive demands and inventory-capacity constraints. Transp. Res. Part E: Logistics Transp. Rev. 82 (2015) 238–255. [Google Scholar]
  • K.J. Arrow, T. Harris and J. Marschak, Optimal inventory policy. Econ.: J Econ. Soc. 19 (1951) 250–272. [Google Scholar]
  • M.A. Aydin and Z.C. Taşkin, Decentralized decomposition algorithms for peer-to-peer linear optimization. RAIRO:OR 54 (2020) 1835–1861. [Google Scholar]
  • J.F. Benders, Partitioning procedures for solving mixed-variables programming problems. Comput. Manage. Sci. 2 (2005) 3–19. [Google Scholar]
  • A.K. Chakravarty, Multi-item inventory aggregation into groups. J. Oper. Res. Soc. 32 (1981) 19–26. [Google Scholar]
  • Y. Chen, K.W. Li, D.M. Kilgour and K.W. Hipel, A case-based distance model for multiple criteria ABC analysis. Comput. Oper. Res. 35 (2008) 776–796. [Google Scholar]
  • T.J. Coelli, D.S.P. Rao, C.J. O’Donnell and G.E. Battese, An Introduction to Efficiency and Productivity Analysis. Springer Science & Business Media (2005). [Google Scholar]
  • M.A. Cohen and R. Ernst, Multi-item classification and generic inventory stock contr. Prod. Inventory Manage. J. 29 (1988) 6. [Google Scholar]
  • M.R. Douissa and K. Jabeur, A new model for multi-criteria ABC inventory classification: PROAFTN method. In: KES (2016) 550–559. [Google Scholar]
  • A. Diabat, O. Battaa and D. Nazzal, An improved Lagrangian relaxation-based heuristic for a joint location-inventory problem. Comput. Oper. Res. 61 (2015) 170–178. [Google Scholar]
  • D. Erlenkotter, Note – An early classic misplaced: Ford W. Harris’s economic order quantity model of 1915. Manage. Sci. 35 (1989) 898–900. [Google Scholar]
  • M.L. Fisher, The Lagrangian relaxation method for solving integer programming problems. Manage. Sci. 50 (2004) 1861–1871. [Google Scholar]
  • B.E. Flores and D.C. Whybark, Implementing multiple criteria ABC analysis. J. Oper. Manage. 7 (1987) 79–85. [Google Scholar]
  • H.A. Guvenir and E. Erel, Multicriteria inventory classification using a genetic algorithm. Eur. J. Oper. Res. 105 (1998) 29–37. [Google Scholar]
  • A. Hadi-Vencheh, An improvement to multiple criteria ABC inventory classification. Eur. J. Oper. Res. 201 (2010) 962–965. [Google Scholar]
  • F. Hooshmand, F. Amerehi and S.A. MirHassani, Logic-based benders decomposition algorithm for contamination detection problem in water networks. Comput. Oper. Res. 115 (2020) 104840. [Google Scholar]
  • C.L. Hwang and K. Yoon, Methods for multiple attribute decision making. In: Multiple Attribute Decision Making. Springer, Berlin Heidelberg (1981) 58–191. [Google Scholar]
  • P. Jaglarz, P. Boryło, A. Szymański and P. Chołda, Enhanced lagrange decomposition for multi-objective scalable TE in SDN. Comput. Netw. 167 (2020) 106992. [Google Scholar]
  • E.O. Jesujoba and A.A. Adenike, ABC analysis and product quality of manufacturing firms in nigeria. J. Manage. Inf. Decision Sci. 24 (2021) 1–9. [Google Scholar]
  • H. Kaabi, K. Jabeur and L. Enneifar, Learning criteria weights with TOPSIS method and continuous VNS for multi-criteria inventory classification. Electron. Notes Discrete Math. 47 (2015) 197–204. [Google Scholar]
  • J.H. Kang and Y.D. Kim, Inventory control in a two-level supply chain with risk pooling effect. Int. J. Prod. Econ. 135 (2012) 116–124. [Google Scholar]
  • N.V. Kovački, P.M. Vidović and A.T. Sarić, Scalable algorithm for the dynamic reconfiguration of the distribution network using the Lagrange relaxation approach. Int. J. Electr. Power Energy Syst. 94 (2018) 188–202. [Google Scholar]
  • S. Li and S. Jia, A Benders decomposition algorithm for the order fulfilment problem of an e-tailer with a self-owned logistics system. Transp. Res. Part E: Logistics Transp. Rev. 122 (2019) 463–480. [Google Scholar]
  • J. Li, X. Zeng, C. Liu and X. Zhou, A parallel Lagrange algorithm for order acceptance and scheduling in cluster supply chains. Knowl.-Based Syst. 143 (2018) 271–283. [Google Scholar]
  • J. Liu, X. Liao, W. Zhao and N. Yang, A classification approach based on the outranking model for multiple criteria ABC analysis. Omega 61 (2016) 19–34. [Google Scholar]
  • D. López-Soto, F. Angel-Bello, S. Yacout and A. Alvarez, A multi-start algorithm to design a multi-class classifier for a multi-criteria ABC inventory classification problem. Expert Syst. Appl. 81 (2017) 12–21. [Google Scholar]
  • E. Mardan, K. Govindan, H. Mina and S.M. Gholami-Zanjani, An accelerated benders decomposition algorithm for a bi-objective green closed loop supply chain network design problem. J. Cleaner Prod. 235 (2019) 1499–1514. [Google Scholar]
  • P. Massart, The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 (1990) 1269–1283. [Google Scholar]
  • M. Mehdizadeh, Integrating ABC analysis and rough set theory to control the inventories of distributor in the supply chain of auto spare parts. Comput. Ind. Eng. 139 (2020) 105673. [Google Scholar]
  • M.A. Millstein, L. Yang and H. Li, Optimizing ABC inventory grouping decisions. Int. J. Prod. Econ. 148 (2014) 71–80. [Google Scholar]
  • R. Mohebifard and A. Hajbabaie, Optimal network-level traffic signal control: a benders decomposition-based solution algorithm. Transp. Res. Part B: Method. 121 (2019) 252–274. [Google Scholar]
  • B. Naderi, K. Govindan and H. Soleimani, A Benders decomposition approach for a real case supply chain network design with capacity acquisition and transporter planning: wheat distribution network. Ann. Oper. Res. 291 (2020) 685–705. [Google Scholar]
  • F.Y. Partovi and J. Burton, Using the analytic hierarchy process for ABC analysis. Int. J. Oper. Prod. Manage. 13 (1993) 29–44. [Google Scholar]
  • Report: World military spending tops 1T in 2004. USA Today. 7 June 2005. Archived from the original on 7 May 2012. Retrieved 6 April 2008. “World Military Spending Soars’’. CBS news channel. 9 June 2004. [Google Scholar]
  • M. Rohaninejad, R. Sahraeian and R. Tavakkoli-Moghaddam, An accelerated Benders decomposition algorithm for reliable facility location problems in multi-echelon networks. Comput. Ind. Eng. 124 (2018) 523–534. [Google Scholar]
  • E.A. Silver, D.F. Pyke and R. Peterson, Inventory Management and Production Planning and Scheduling. Wiley, New York 3 (1998) 30. [Google Scholar]
  • A.V.V. Sudhakar, C. Karri and A.J. Laxmi, Profit based unit commitment for GENCOs using Lagrange Relaxation-Differential Evolution. Eng. Sci. Technol. Int. J. 20 (2017) 738–747. [Google Scholar]
  • R.H. Teunter, M.Z. Babai and A.A. Syntetos, ABC classification: service levels and inventory costs. Prod. Oper. Manage. 19 (2010) 343–352. [Google Scholar]
  • C.Y. Tsai and S.W. Yeh, A multiple objective particle swarm optimization approach for inventory classification. Int. J. Prod. Econ. 114 (2008) 656–666. [Google Scholar]
  • U.S. Bureau of Economic Analysis (BEA) – Home Page. [Google Scholar]
  • M.J.G. Van Eijs, R.M.J. Heuts and J.P.C. Kleijnen, Analysis and comparison of two strategies for multi-item inventory systems with joint replenishment costs. Eur. J. Ope. Res. 59 (1992) 405–412. [Google Scholar]
  • G. Wang, W. Ben-Ameur and A. Ouorou, A Lagrange decomposition-based branch and bound algorithm for the optimal mapping of cloud virtual machines. Eur. J. Oper. Res. 276 (2019) 28–39. [Google Scholar]
  • J. Wang, Q. Wan and M. Yu, Green supply chain network design considering chain-to-chain competition on price and carbon emission. Comput. Ind. Eng. 145 (2020) 106503. [Google Scholar]
  • A. Yolmeh and U. Saif, Closed-loop supply chain network design integrated with assembly and disassembly line balancing under uncertainty: an enhanced decomposition approach. Int. J. Prod. Res. 59 (2021) 2690–2707. [Google Scholar]
  • M.C. Yu, Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Syst. App. 38 (2011) 3416–3421. [Google Scholar]
  • C.A. Zetina, I. Contreras and J.F. Cordeau, Exact algorithms based on Benders decomposition for multi-commodity uncapacitated fixed-charge network design. Comput. Oper. Res. 111 (2019) 311–324. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.