Open Access
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2915 - 2939
Published online 13 October 2021
  • J. Bracken and J. McGill, Mathematical programs with optimization problems in the constraints. Oper. Res. 21 (1973) 37–44. [Google Scholar]
  • B. Brunaud, I.E. Grossmann, Perspectives in multilevel decision-making in the process industry. Front. Eng. Manag. 4 (2017) 256–270. [Google Scholar]
  • V. Dua, N.A. Bozinis and E.N. Pistikopoulos, A multiparametric programming approach for mixed-integer quadratic engineering problems. Comput. Chem. Eng. 26 (2002) 715–733. [Google Scholar]
  • V. Dua and E.N. Pistikopoulos, An algorithm for the solution of multiparametric mixed integer linear programming problems. Ann. Oper. Res. 99 (2000) 123–139. [Google Scholar]
  • A.V. Fiacco, Sensitivity analysis for nonlinear programming using penalty methods. Math. Program. 10 (1976) 287–311. [Google Scholar]
  • A.V. Fiacco, G.P. McCormick, Nonlinear Programming: Sequential Unconstrained Minimization Techniques. J. Wiley and Sons Inc, New York, London, Sydney, Toronto (1968). [Google Scholar]
  • M. Guignard, Generalized Kuhn-Tucker conditions for mathematical programming problems in a Banach space. SIAM J. Cont. 7 (1969) 232–241. [Google Scholar]
  • J. Han, G. Zhang, Y. Hu, J. Lu, Solving tri-level programming problems using a particle swarm optimization algorithm. In: The 10th IEEE Conference on Industrial Electronics and Applications (2015) 569–574. [Google Scholar]
  • J. Han, G. Zhang, J. Lu, Y. Hu and S. Ma, Model and algorithm for multi-follower tri-level hierarchical decision-making, edited by C. Loo, K. Yap, K. Wong, A. Beng-Jin and K. Huang. In: Neural Information Processing. ICONIP 2014, Part III. Lecture Notes in Computer Science, Vol. 8836. Springer, Switzerland (2014) 398–406. [Google Scholar]
  • M. Hu and M. Fukushima, Multi-leader-follower games: models, methods and applications. J. Oper. Res. Soc. Jpn 58 (2015) 1–23. [Google Scholar]
  • L.A. Julien, On noncooperative oligopoly equilibrium in the multiple leader–follower game. Eur. J. Oper. Res. 256 (2017) 650–662. [Google Scholar]
  • S.M. Kassa, Three-level global resource allocation model for HIV control: A hierarchical decision system approach. Math. Biosci. Eng. 15 (2018) 255–273. [PubMed] [Google Scholar]
  • A.M. Kassa and S.M. Kassa, Approximate solution algorithm for multi-parametric non-convex programming problems with polyhedral constraints. Int. J. Optim. Control: Theor. Appl. 4 (2014) 89–98. [Google Scholar]
  • A.M. Kassa and S.M. Kassa, Deterministic solution approach for some classes of nonlinear multilevel programs with multiple follower. J. Global Optim. 68 (2017) 729–747. [Google Scholar]
  • A.A. Kulkarni, U.V. Shanbhag, An existence result for hierarchical Stackelberg v/s Stackelberg games. IEEE Trans. Automat. Contr. 60 (2015) 3379–3384. [Google Scholar]
  • S. Leyffer, T. Munson, Solving multi-leader-common-follower games. Optim. Methods Softw. 25 (2010) 601–623. [CrossRef] [Google Scholar]
  • K. Okuguchi, Expectations and stability in oligopoly models. In: Lecture Notes in Economics and Mathematical Systems, vol 138. Springer-Verlag, Berlin (1976). [CrossRef] [Google Scholar]
  • J.S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manage. Sci. 2 (2005) 21–56. [Google Scholar]
  • J.S. Pang and M. Fukushima, Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Comput. Manage. Sci. 6 (2009) 373–375. [Google Scholar]
  • E. Pistikopoulos, M. Georgiadis, V. Dua, Multi-parametric programming: theory, algorithms and applications. Wiley-VCH Verlag GmbH & Co, KGaA (2007). [Google Scholar]
  • H.D. Sherali, A multiple leader Stackelberg model and analysis. Oper. Res. 32 (1984) 390–404. [Google Scholar]
  • C.L. Su, Analysis on the forward market equilibrium model. Oper. Res. Lett. 35 (2007) 74–82. [Google Scholar]
  • L. Sun, Equivalent bilevel programming form for the generalized Nash equilibrium problem. J. Math. Res. 2 (2010) 8–13. [Google Scholar]
  • Q. Wang, F. Yang, Y. Liu, Bilevel programs with multiple followers. J. Syst. Sci. Complex. 13 (2000) 265–276. [Google Scholar]
  • A.B. Zewde and S.M. Kassa, A method for solving some class of multilevel multi-leader multi-follower programming problems, edited by H.A. Le-Thi, H.M. Le, T. Pham-Dinh. In: Optimization of Complex Systems: Theory, Models, Algorithms and Applications. WCGO 2019. Advances in Intelligent Systems and Computing, Vol. 991. Springer Nature, Switzerland (2020) 589–599. [Google Scholar]
  • A.B. Zewde, S.M. Kassa, Multi-parametric approach for multilevel multi-leader-multi-follower games using equivalent reformulations. J. Math. Comput. Sci. 11 (2021) 2955–2980. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.