Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 2991 - 3020
DOI https://doi.org/10.1051/ro/2021127
Published online 13 October 2021
  • O.P. Agrawal, J.A. Tenreiro-Machado and I. Sabatier, Fractional derivatives and their applications. Nonlinear Dyn. 38 (2004) 1–489. [Google Scholar]
  • R.P. Agarwal, V. Lakshmikantham and J.J. Nieto, On the concept of solutions for fractional differential equations with uncertainty. Non Linear Ann. 72 (2010) 2859–2862. [Google Scholar]
  • T. Allahviranloo and M.B. Ahmadi, Fuzzy Laplace transforms. Soft Comput. 14 (2010) 235–243. [Google Scholar]
  • T. Allahviranloo, S. Abbasbandy, S. Salahsour and A. Hakimzadeh, A new method for solving fuzzy linear differential equations. Computing 92 (2011) 181–197. [Google Scholar]
  • T. Allahviranloo, S. Salahshour and S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty. Soft Comput. 16 (2012) 297–302. [Google Scholar]
  • H.K. Alfares and A.M. Ghaithan, Inventory and pricing model with price-dependent demand, time varying holding cost and quantity discounts. Comput. Ind. Eng. 94 (2016) 170–177. [Google Scholar]
  • B. Bed, I.J. Rudas and A.L. Bencsik, First order linear fuzzy differential equations under generalized differentiability. Inf. Sci. 177 (2007) 1648–1662. [Google Scholar]
  • B. Bede, A note on “two-point boundary value problems associated with nonlinear fuzzy differential equations’’. Fuzzy Sets Syst. 157 (2006) 986–989. [Google Scholar]
  • R.E. Bellman and L.A. Zadeh, Decision making in a fuzzy environment. Manag. Sci. 17 (1970) 141–164. [Google Scholar]
  • A. Bousdekis, N. Papageorgiou, B. Magoutas, D. Apostolou and G. Mentzas, Sensor-driven learning of time-dependent parameters for prescriptive analytics. IEEE Access 8 (2020) 92383–92392. [Google Scholar]
  • J.J. Buckley and T. Feuring, Fuzzy initial value problem for n-th order linear differential equations. Fuzzy Sets Syst. 121 (2001) 247–255. [Google Scholar]
  • S.L. Chang and I.A. Zadeh, On fuzzy mapping and control. IEEE Trans. Syst. Man Cybern. 2 (1972) 30–34. [Google Scholar]
  • S.H. Chen, C.C. Wangand and R. Arthur, Backorder fuzzy inventory model under function principle. Inf. Sci. 95 (1996) 71–79. [Google Scholar]
  • B. Das, N.K. Mahapatra and M. Maity, Initial-valued first order fuzzy differential equation in bi-level inventory model with fuzzy demand. Math. Model. Anal. 13 (2008) 493–512. [Google Scholar]
  • S.K. De, Triangular dense fuzzy lock sets. Soft Comput. 22 (2017) 7243–7254. [Google Scholar]
  • S.K. De and I. Beg, Triangular dense fuzzy sets and new defuzzification methods. J. Intell. Fuzzy Syst. 31 (2016) 469–477. [Google Scholar]
  • B.K. Dey, B. Sarkar, M. Sarkar and S. Pareek, An integrated inventory model involving discrete setup cost reduction, variable safety factor, selling price dependent demand and investment. RAIRO:OR 53 (2019) 39–57. [CrossRef] [EDP Sciences] [Google Scholar]
  • K. Diethelm, D. Baleanu and E. Scalas, Fractional Calculus: Models and Numerical Methods, World Scientific (2012). [Google Scholar]
  • W.A. Doneldson, Inventory replenishment policy for a linear trend in demand – an analytic solution. Oper. Res. Quar. 28 (1977) 663–670. [Google Scholar]
  • L. Feng, Y.L. Chan and L.E.C. Barron, Pricing and lot-sizing policies for perishable goods when the demand depends on selling price, displayed stocks and expiration date. Int. J. Prod. Econ. 185 (2017) 11–20. [Google Scholar]
  • B.C. Giri, S. Pal, A. Goswami and K.S. Chaudhuri, An inventory model for deteriorating items with stock dependent demand rate. Eur. J. Oper. Res. 95 (1996) 604–610. [Google Scholar]
  • P. Guchhait, M.K. Maity and M. Maity, A production inventory model with fuzzy production and demand using fuzzy differential equation: an interval compared genetic algorithm approach. Eng. Appl. Artif. Intell. 26 (2013) 766–778. [Google Scholar]
  • P. Guchhait, M.K. Maity and M. Maity, Inventory model of a deteriorating item with price and credit linked fuzzy demand: a Fuzzy differential equation approach. OPSEARCH 51 (2014) 321–353. [Google Scholar]
  • G. Hadley and T.M. Whitin, Analysis of Inventory Systems. Prentice-Hall, Englewood Cliffs, NJ (1963). [Google Scholar]
  • F.W. Harris, How many parts to make at once. Factory Mag. Manag. 10 (1913) 135–136. [Google Scholar]
  • A. Hendalianpour, Optimal lot-size and price of perishable goods: a novel game-theoretic model using double interval grey numbers. Comput. Ind. Eng. 149 (2020) 106780. [Google Scholar]
  • A. Hendalianpour, M. Hamzehlou, M.R. Feylizadeh, N. Xie and M.H. Shakerizadeh, Coordination and competition in two-echelon supply chain using grey revenue-sharing contracts. Grey Syst.: Theory App. (2020). DOI: 10.1108/GS-04-2020-0056. [Google Scholar]
  • N.V. Hoa, V. Lupulescu and D.O. Regan, A note on initial value problems for fractional fuzzy differential equations. Fuzzy Sets Syst. 347 (2018) 54–69. [Google Scholar]
  • M. Hojati, Bridging the gap between probabilistic and fuzzy-parameter EOQ models. Int. J. Prod. Econ. 91 (2004) 215–221. [Google Scholar]
  • O. Kaleva, Fuzzy differential equations. Fuzzy set Syst. 24 (1987) 301–317. [Google Scholar]
  • S. Karmakar, S.K. De and A. Goswami, A pollution sensitive dense fuzzy economic production quantity model with cycle time dependent production rate. J. Clean. Prod. 154 (2017) 139–150. [Google Scholar]
  • S. Karmakar, S.K. De and A. Goswami, A pollution sensitive remanufacturing model with waste items: triangular dense fuzzy lock set approach. J. Clean. Prod. 187 (2018) 789–803. [Google Scholar]
  • N. Kazemi, E. Shekarian and L.E. Cárdenas-Barrón, Incorporating human learning into afuzzy EOQ inventory model with backorders. Comput. Ind. Eng. 87 (2015) 540–542. [Google Scholar]
  • M.A.-A. Khan, A.A. Shaikh, G. Panda and I. Konstantaras, Inventory system with expiration date: pricing and replenishment decisions. Comput. Ind. Eng. 132 (2019) 232–247. [Google Scholar]
  • M.A.-A. Khan, A.A. Shaikh, I. Konstantaras, A.K. Bhunia and L.E. CárdenasBarrón, Inventory models for perishable items with advanced payment, linearly time-dependent holding cost and demand dependent on advertisement and selling price. Int. J. Prod. Econ. 230 (2020) 107804. [Google Scholar]
  • M.A.-A. Khan, S. Ahmed, M.S. Babu and N. Sultana, Optimal lot-size decision for deteriorating items with price-sensitive demand, linearly timedependent holding cost under all-units discount environment. Int. J. Syst. Sci.: Oper. Logist. (2020) 1–14. DOI: 10.1080/23302674.2020.1815892. [Google Scholar]
  • J. Kim, H. Huang and S. Shinn, A optimal policy to increase supplier’s profit wit price dependent demand functions. Prod. Plan. Control 6 (1995) 45–50. [Google Scholar]
  • P. Liu, A. Hendalianpour, J. Razmi and M.S. Sangari, A solution algorithm for integrated production-inventory-routing of perishable goods with transshipment and uncertain demand. Complex Intell. Syst. 7 (2021) 1349–1365. [Google Scholar]
  • P. Majumdar, S.P. Mondal, U.K. Bera and M. Maity, Application of Generalized Hukuhara derivative approach in an economic production quantity model with partial trade credit policy under fuzzy environment. Oper. Res. Perspect. 3 (2016) 77–91. [Google Scholar]
  • A. Mashud, M. Khan, M. Uddin and M. Islam, A non instantaneous inventory model having different deterioration rates with stock and price dependent demand under partial backlogged shortage. Uncertain Supply Chain Manag. 6 (2018) 49–64. [Google Scholar]
  • K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Differential Equations. John Wiley, New York (1993). [Google Scholar]
  • U. Mishra, L.E.C. Barron, S. Tiwari, A.A. Shaikh and G.T. Graza, An inventory model under price and stock dependent demand for controllable deterioration rate with shortage and preservation technology investment. Ann. Oper. Res. 254 (2017) 165–190. [Google Scholar]
  • S.P. Mondal and T.K. Roy, First order linear homogeneous fuzzy ordinary differential equation based on the Lagrange multiplier method. J. Soft Comput. Appl. 2013 (2013) 1–17. [Google Scholar]
  • M. Mondal, M.K. Maity and M. Maity, A production-recycling model with variable demand, demand dependent fuzzy return rate: a fuzzy differential approach. Comput. Ind. Eng. 64 (2013) 318–332. [Google Scholar]
  • S. Mukhopadhyay, R.N. Mukherjee and K.S. Chaudhuri, Joint pricing and ordering policy for a deteriorating inventory. Comput. Ind. Eng. 47 (2004) 339–349. [Google Scholar]
  • E. Naddor, Inventory Systems. John Wiley, New York (1966). [Google Scholar]
  • B. Pal, S.S. Sana and K. Chaudhuri, Two echelon manufactures retailer supply chain strategies with price, quality and promotional effort sensitive demand. Int. Trans. Oper. Res. 22 (2015) 1071–1095. [Google Scholar]
  • R. Pakhira, U. Ghosh and S. Sarkar, Application of memory effects in an inventory model with price dependent demand rate during shortage. Int. J. Edu. Manag. Eng. 3 (2019) 51–64. [Google Scholar]
  • K.S. Park, Fuzzy-set theoretic interpretation of economic order quantity. IEEE Trans. Syst. Man Cybern. 17 (1987) 1082–1084. [Google Scholar]
  • I. Podlubny, Fractional Differential Equations. Academic Press, San Diego, CA (1999). [Google Scholar]
  • H. Polatoglu and L. Sahin, Operational procurement policies under price dependent demand. Int. J. Prod. Eng. 65 (2000) 141–171. [Google Scholar]
  • M. Rahaman, S.P. Mondal, A.A. Shaikh, A. Ahmadian, N. Senu and S. Salahshour, Arbitrary-order economic production quantity model with and without deterioration: generalized point of view. Adv. Differ. Equ. 2020 (2020). DOI: 10.1186/s13662-019-2465-x. [CrossRef] [Google Scholar]
  • M. Rahaman, S.P. Mondal, A.A. Shaikh, P. Pramanik, S. Roy, M.K. Maity, R. Mondal and D. De, Artificial bee colony optimization-inspired synergetic study of fractional-order economic production quantity model. Soft Comput. 24 (2020) 15341–15359. [Google Scholar]
  • M. Rahaman, S.P. Mondal, S. Alam, N.A. Khan and A. Biswas, Interpretation of exact solution for fuzzy fractional non-homogeneous differential equation under the Riemann-Liouville sense and its application on the inventory management control problem. Granul. Comput. 6 (2021) 953–976. [Google Scholar]
  • M. Rahaman, S.P. Mondal, S. Alam and A. Goswami, Synergetic study of inventory management problem in uncertain environment based on memory and learning effects. Sādhanā 46 (2021) 1–20. [Google Scholar]
  • S. Salahshour, T. Allahviranloo, S. Abbasbandy and D. Baleanu, Existence and uniqueness results for fractional differential equations with uncertainty. Adv. Diff. Equ. 2012 (2012). DOI: 10.1186/1687-1847-2012-112. [CrossRef] [Google Scholar]
  • S. Salahshour, T. Allahviranloo and S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms. Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 1372–1381. [Google Scholar]
  • S.S. Sana, Price sensitive demand and random sales price – a news boy problem. Int. J. Syst. Sci. 43 (2012) 491–498. [Google Scholar]
  • E. Shekarian, E.U. Olugu, S.H. Abdul-Rashid and N. Kazemi, An economic order quantity modelconsidering different holding costs forimperfect quality items subject to fuzziness and learning. J. Intell. Fuzzy Syst. 30 (2016) 2985–2997. [CrossRef] [Google Scholar]
  • E. Shekarian, S.H.A. Rashid, E. Bottan and S.K. De, Fuzzy inventory models: a comprehensive review. Appl. Soft Comput. 55 (2017) 588–621. [Google Scholar]
  • E.A. Silver and H.C. Meal, A heuristic for selecting lot size quantities for the case of a deterministic time varying demand rate and discrete opportunities for replenishment. Prod. Inven. Manag. 14 (1973) 64–74. [Google Scholar]
  • M. Vujosevic, D. Petrovic and R. Petrovic, Inventory formula when inventory cost is fuzzy. Int. J. Prod. Econ. 45 (1996) 499–504. [Google Scholar]
  • L.A. Zadeh, Fuzzy sets. Inf. Control 8 (1965) 338–356. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.