Open Access
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 3197 - 3215
Published online 29 October 2021
  • S. Akther, H. Fukuyame and W.L. Weber, Estimating two-stage network slacks-based inefficiency: an application to Bangladesh banking. Omega 41 (2013) 88–96. [CrossRef] [Google Scholar]
  • A. Amirteimoori, S. Kordrostami and H. Azizi, Additive models for network data envelopment analysis in the presence of shared resources. Transport. Res. D 48 (2016) 411–424. [CrossRef] [Google Scholar]
  • Q. An, Q. Wu, X. Zhou and X. Chen, Closest target setting for two-stage network system: An application to the commercial banks in China. Expert Syst. Appl. 175 (2021) 1144799. [Google Scholar]
  • A. Ashrafi and A.B. Jaafar, Performance measurement of two-stage production systems with undesirable factors by data envelopment analysis. J. Appl. Sci. 11 (2011) 3515–3519. [CrossRef] [Google Scholar]
  • A.D. Athanassopoulos, Service quality and operating efficiency synergies for management control in the provision of financial services: Evidence form Greek bank branches. Eur. J. Oper. Res. 98 (1997) 300–313. [CrossRef] [Google Scholar]
  • N.K. Avkiran and A. McCrystal, Sensitivity analysis of network DEA: NSBM versus NRAM. Appl. Math. Comput. 218 (2012) 11226–11239. [Google Scholar]
  • A. Charnes and W.W. Cooper, Programming with linear fractional functional. Nav. Res. Log. 9 (1962) 181–186. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • Y. Chen and J. Zhu, Measuring information technologys indirect impact on firm performance. Inform. Technol. Manag. 5 (2004) 9–22. [CrossRef] [Google Scholar]
  • Y. Chen, W.D. Cook, N. Li and J. Zhu, Additive efficiency decomposition in two-stage DEA. Eur. J. Oper. Res. 196 (2009) 1170–1176. [Google Scholar]
  • Y. Chen, Y.J. Li, L. Liang, A. Salo and H. Wu, Frontier projection and efficiency decomposition in two-stage processes with slacks-based measures. Eur. J. Oper. Res. 250 (2016) 543–554. [CrossRef] [Google Scholar]
  • A. Ebrahimnejad, M. Tavana, F.H. Lotfi, R. Shahverdi and M. Yousefpour, A three-stage Data Envelopment Analysis model with application to banking industry. Measurement 49 (2014) 308–319. [CrossRef] [Google Scholar]
  • H. Fukuyama and R. Matousek, Efficiency of Turkish banking: two-stage network system: Variable returns to scale model. J. Int. Financ. Mark. Inst. Money 21 (2011) 75–91. [CrossRef] [Google Scholar]
  • H. Fukuyama and R. Matousek, Modeling bank performance: A network DEA approach. Eur. J. Oper. Res. 259 (2017) 721–732. [CrossRef] [Google Scholar]
  • M. Hemmati, S.A. Dalghandi and H. Nazari, Measuring relative performance of banking industry using a DEA and TOPSIS. Manag. Sci. Lett. 3 (2013) 499–503. [CrossRef] [Google Scholar]
  • C. Kao, Network data envelopment analysis: a review. Eur. J. Oper. Res. 239 (2014) 1–16. [Google Scholar]
  • C. Kao, Efficiency decomposition for general multi-stage systems in data envelopment analysis. Eur. J. Oper. Res. 232 (2014) 117–124. [Google Scholar]
  • C. Kao and S.N. Hwang, Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Eur. J. Oper. Res. 185 (2008) 418–429. [Google Scholar]
  • S.A. Kourtzidis, R. Matousek and N.G. Tzeremes, Productivity growth in network models: An application to banking during the financial crisis. J. Oper. Res. Soc. 7 (2019) 111–124. [CrossRef] [Google Scholar]
  • H.B. Kwon and J. Lee, Two-stage production modelling of large U.S. banks: A DEA-neural network approach. Expert Syst. Appl. 42 (2015) 6758–6766. [CrossRef] [Google Scholar]
  • H.B. Kwon, J. Lee and K.N. White Davis, Neural network modeling for a two-stage production process with versatile variables: Predictive analysis for above-average performance. Expert Syst. Appl. 100 (2018) 120–130. [CrossRef] [Google Scholar]
  • H.F. Lewis and T.R. Sexton, Network DEA: Efficiency analysis of organization with complex internal structure. Comput. Oper. Res. 31 (2004) 1365–1410. [CrossRef] [Google Scholar]
  • L. Liang, F. Yang, W.D. Cook and J. Zhu, DEA models for supply chain efficiency evaluation. Ann. Oper. Res. 145 (2006) 35–49. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Liang, W.D. Cook and J. Zhu, DEA models for two-stage processes: Game approach and efficiency decomposition. Nav. Res. Log. 55 (2008) 643–653. [CrossRef] [Google Scholar]
  • W. Liu, Z. Zhou, C. Ma, D. Liu and W. Shen, Two-stage DEA models with undesirable input-intermediate-outputs. Omega 56 (2015) 74–87. [Google Scholar]
  • S. Lozano, Slacks-based inefficiency approach for general network with bad outputs: An application to the banking sector. Omega 60 (2016) 73–84. [CrossRef] [Google Scholar]
  • X. Luo, Evaluating the profitability and marketability efficiency of large banks C an application of data envelopment analysis. J. Bus. Res. 56 (2003) 627–635. [CrossRef] [Google Scholar]
  • K. Matthews, Risk management and managerial efficiency in Chinese banks: A network DEA framework. Omega 41 (2013) 207–215. [CrossRef] [Google Scholar]
  • S. Mehdizadeh, A. Amirteimoori, V. Charles, M.H. Behzadi and S. Kordrostami, Measuring the efficiency of two-stage network processes: A satisficing DEA approach. J. Oper. Res. Soc. 72 (2020) 354–366. [Google Scholar]
  • S.G.J. Naini, A. Moini and M.J. Rezaee, Nash bargaining game model for two parallel stages process evaluation with shared inputs. Int. J. Adv. Manuf. Tech. 67 (2013) 475–484. [CrossRef] [Google Scholar]
  • J.C. Paradi and H. Zhu, A survey on bank branch efficiency and performance research with data envelopment analysis. Omega 41 (2013) 61–79. [Google Scholar]
  • J.C. Paradi, S. Rouatt and H. Zhu, Two-stage evaluation of bank branch efficiency using data envelopment analysis. Omega 39 (2011) 99–109. [Google Scholar]
  • B.K. Sahoo, J. Zhu, K. Tone and B.M. Klemen, Decomposing technical efficiency and scale elasticity in two-stage network DEA. Eur. J. Oper. Res. 233 (2014) 584–594. [CrossRef] [Google Scholar]
  • L.M. Seiford and J. Zhu, Profitability and marketability of the top 55US commercial banks. Manag. Sci. 45 (1999) 1270–1288. [CrossRef] [Google Scholar]
  • M.S. Shahbazifar, R.K. Matin, M. Khounsiavash and F. Koushki, Group ranking of two-stage production units in network data envelopment analysis. RAIRO: OR 55 (2021) 1825–1840. [CrossRef] [EDP Sciences] [Google Scholar]
  • G. Sherman and F. Gold, Bank branch operating efficiency C evaluation with data envelopment analysis. J. Bank. Finance 9 (1985) 297–315. [CrossRef] [Google Scholar]
  • X. Shi, Y. Li, A. Emrouznejad, J. Xie and L. Liang, Estimation of potential gains from bank mergers: A novel two-stage cost efficiency DEA model. J. Oper. Res. Soc. 68 (2017) 1045–1055. [CrossRef] [Google Scholar]
  • I.M. Tavakoli and A. Mostafaee, Free disposal hull efficiency scores of units with network structures. Eur. J. Oper. Res. 277 (2019) 1027–1036. [CrossRef] [Google Scholar]
  • K. Tone and M. Tsutsui, Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 197 (2009) 243–252. [Google Scholar]
  • I.E. Tsolas, Modeling bank branch profitability and effectiveness by means of DEA. Int. J. Product. Perform. Manag. 59 (2010) 432–451. [CrossRef] [Google Scholar]
  • P. Wanke and C. Barros, Two-Stage DEA: An application to major Brazilian banks. Expert Syst. Appl. 41 (2014) 2337–2344. [CrossRef] [Google Scholar]
  • K. Wang, W. Huang, J. Wu and Y.M. Liu, Efficiency measures of the Chinese commercial banking system using an additive two-stage DEA. Omega 44 (2014) 5–20. [CrossRef] [Google Scholar]
  • G. Xu and Z. Zhou, Assessing the efficiency of financial supply chain for Chinese commercial banks: A two-stage AR-DEA model. Ind. Manag. Data Syst. 121 (2020) 894–920. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Yang and H.M. Liu, Managerial efficiency in Taiwan bank branches: A network DEA. Econ. Model. 29 (2012) 450–461. [CrossRef] [Google Scholar]
  • Y. Zha and L. Liang, Two-stage cooperation model with input freely distributed among the stages. Eur. J. Oper. Res. 205 (2010) 332–338. [Google Scholar]
  • Y. Zha, N. Liang, M. Wu and Y. Bian, Efficiency evaluation of banks in China: A dynamic two-stage slacks-based measure approach. Omega 60 (2016) 60–72. [CrossRef] [Google Scholar]
  • Z. Zhou, L. Sun, W. Yang, W. Liu and C. Ma, A bargaining game model for efficiency decomposition in the centralized model of two-stage systems. Comput. Ind. Eng. 64 (2013) 103–108. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.