Open Access
RAIRO-Oper. Res.
Volume 55, Number 5, September-October 2021
Page(s) 3245 - 3279
Published online 03 November 2021
  • S.R. Abazari, A. Aghsami and M. Rabbani, Prepositioning and distributing relief items in humanitarian logistics with uncertain parameters. Soc.-Econ. Planning Sci. 74 (2021) 100933. [CrossRef] [Google Scholar]
  • S. Alavi, N. Azad, M. Heydar and H. Davoudpour, Integrated production, inventory, and location-allocation decisions in designing supply chain networks. Int. J. Inf. Syst. Supply Chain Manage. (IJISSCM) 9 (2016) 22–42. [CrossRef] [Google Scholar]
  • N. Alikar, S.M. Mousavi, R.A.R. Ghazilla, M. Tavana and E.U. Olugu, A bi-objective multi-period series-parallel inventory-redundancy allocation problem with time value of money and inflation considerations. Comput. Ind. Eng. 104 (2017) 51–67. [CrossRef] [Google Scholar]
  • I. Aljarah, A.Z. Ala'M, H. Faris, M.A. Hassonah, S. Mirjalili and H. Saadeh, Simultaneous feature selection and support vector machine optimization using the grasshopper optimization algorithm. Cognitive Comput. 10 (2018) 478–495. [CrossRef] [Google Scholar]
  • M. Amiri-Aref, W. Klibi and M.Z. Babai, The multi-sourcing location inventory problem with stochastic demand. Eur. J. Oper. Res. 266 (2018) 72–87. [CrossRef] [Google Scholar]
  • N. Amrouche and R. Yan, A manufacturer distribution issue: how to manage an online and a traditional retailer. Ann. Oper. Res. 244 (2016) 257–294. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Araya-Sassi, P.A. Miranda and G. Paredes-Belmar, Lagrangian relaxation for an inventory location problem with periodic inventory control and stochastic capacity constraints. Math. Prob. Eng. 2018 (2018) 8237925. [CrossRef] [Google Scholar]
  • C. Araya-Sassi, G. Paredes-Belmar and G. Gutiérrez-Jarpa, Multi-commodity inventory-location problem with two different review inventory control policies and modular stochastic capacity constraints. Comput. Ind. Eng. 143 (2020) 106410. [CrossRef] [Google Scholar]
  • A. Aziziankohan, F. Jolai, M. Khalilzadeh, R. Soltani and R. Tavakkoli-Moghaddam, Green supply chain management using the queuing theory to handle congestion and reduce energy consumption and emissions from supply chain transportation fleet. J. Ind. Eng. Manage. (JIEM) 10 (2017) 213–236. [Google Scholar]
  • J. Behnamian, S.M.T. Fatemi Ghomi, F. Jolai and P. Heidary, Location-allocation and scheduling of inbound and outbound trucks in multiple cross-dockings considering breakdown trucks. J. Optim Ind. Eng. 11 (2018) 51–65. [Google Scholar]
  • O. Berman, D. Krass and M.M. Tajbakhsh, A coordinated location-inventory model. Eur. J. Oper. Res. 217 (2012) 500–508. [Google Scholar]
  • A.K. Bhunia, A.A. Shaikh and R. Gupta, A study on two-warehouse partially backlogged deteriorating inventory models under inflation via particle swarm optimisation. Int. J. Syst. Sci. 46 (2015) 1036–1050. [CrossRef] [Google Scholar]
  • M. Bonney and M.Y. Jaber, Environmentally responsible inventory models: non-classical models for a non-classical era. Int. J. Prod. Econ. 133 (2011) 43–53. [CrossRef] [Google Scholar]
  • M. Braglia, D. Castellano and D. Song, Efficient near-optimal procedures for some inventory models with backorders-lost sales mixture and controllable lead time, under continuous or periodic review. Int. J. Math. Oper. Res. 13 (2018) 141–177. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Braglia, D. Castellano, L. Marrazzini and D. Song, A continuous review, (Q, r) inventory model for a deteriorating item with random demand and positive lead time. Comput. Oper. Res. 109 (2019) 102–121. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Branke, J. Branke, K. Deb, K. Miettinen and R. Slowiński, editors. Multiobjective Optimization: Interactive and Evolutionary Approaches. Springer Science & Business Media 5252 (2008). [CrossRef] [Google Scholar]
  • G. Büyüközkan and G. Çifçi, An integrated QFD framework with multiple formatted and incomplete preferences: a sustainable supply chain application. Appl. Soft Comput. 13 (2013) 3931–3941. [CrossRef] [Google Scholar]
  • Z. Dai, F. Aqlan, X. Zheng and K. Gao, A location-inventory supply chain network model using two heuristic algorithms for perishable products with fuzzy constraints. Comput. Ind. Eng. 119 (2018) 338–352. [CrossRef] [Google Scholar]
  • S.K. Das, M. Pervin, S.K. Roy and G.W. Weber, Multi-objective solid transportation-location problem with variable carbon emission in inventory management: a hybrid approach. Ann. Oper. Res. (2021) 1–27. DOI: 10.1007/s10479-020-03809-z. [Google Scholar]
  • M. Dehghan, S.R. Hejazi, M. Karimi-Mamaghan, M. Mohammadi and A. Pirayesh, Capacitated location routing problem with simultaneous pickup and delivery under the risk of disruption. RAIRO:OR 55 (2021) 1371–1399. [CrossRef] [EDP Sciences] [Google Scholar]
  • E. Dehghani, M.S. Pishvaee and M.S. Jabalameli, A hybrid Markov process-mathematical programming approach for joint location-inventory problem under supply disruptions. RAIRO:OR 52 (2018) 1147–1173. [Google Scholar]
  • A. Diabat, E. Dehghani and A. Jabbarzadeh, Incorporating location and inventory decisions into a supply chain design problem with uncertain demands and lead times. J. Manuf. Syst. 43 (2017) 139–149. [CrossRef] [Google Scholar]
  • Y. Fang and B. Shou, Managing supply uncertainty under supply chain Cournot competition. Eur. J. Oper. Res. 243 (2015) 156–176. [Google Scholar]
  • R.Z. Farahani, H. Rashidi Bajgan, B. Fahimnia and M. Kaviani, Location-inventory problem in supply chains: a modelling review. Int. J. Prod. Res. 53 (2015) 3769–3788. [CrossRef] [Google Scholar]
  • M. Fathi, M. Khakifirooz, A. Diabat and H. Chen, An integrated queuing-stochastic optimization hybrid Genetic Algorithm for a location-inventory supply chain network. Int. J. Prod. Econ. 237 (2021) 108139. [CrossRef] [Google Scholar]
  • T.L. Friesz, I. Lee and C.C. Lin, Competition and disruption in a dynamic urban supply chain. Transp. Res. Part B: Methodol. 45 (2011) 1212–1231. [CrossRef] [Google Scholar]
  • P. Ghasemi and K. Khalili-Damghani, A robust simulation-optimization approach for pre-disaster multi-period location-allocation-inventory planning. Math. Comput. Simul. 179 (2021) 69–95. [CrossRef] [Google Scholar]
  • V. Hajipour, P. Fattahi, M. Tavana and D. Di Caprio, Multi-objective multi-layer congested facility location-allocation problem optimization with Pareto-based meta-heuristics. Appl. Math. Modell. 40 (2016) 4948–4969. [CrossRef] [Google Scholar]
  • T.P. Harrison, Principles for the strategic design of supply chains. In: The Practice of Supply Chain Management: Where Theory and Application Converge. Springer, Boston, MA (2004) 3–12. [CrossRef] [Google Scholar]
  • D. Jia and S. Li, Optimal decisions and distribution channel choice of closed-loop supply chain when e-retailer offers online marketplace. J. Cleaner Prod. 265 (2020) 121767. [Google Scholar]
  • E. Kaoud, M.A. Abdel-Aal, T. Sakaguchi and N. Uchiyama, Design and optimization of the dual-channel closed loop supply chain with e-commerce. Sustainability 12 (2020) 10117. [CrossRef] [Google Scholar]
  • W.F. Khan and O. Dey, Periodic review inventory model with normally distributed fuzzy random variable demand. Int. J. Syst. Sci. Oper. Logistics 6 (2019) 119–129. [Google Scholar]
  • S.H. Liao, C.L. Hsieh and W.C. Ho, Multi-objective evolutionary approach for supply chain network design problem within online customer consideration. RAIRO:OR 51 (2017) 135–155. [Google Scholar]
  • S. Malekkhouyan, A. Aghsami and M. Rabbani, An integrated multi-stage vehicle routing and mixed-model job-shop-type robotic disassembly sequence scheduling problem for e-waste management system. Int. J. Comput. Integrated Manuf. (2021) 1–26. DOI: 10.1080/0951192X.2021.1963484. [Google Scholar]
  • J. Marklund and P. Berling, Green inventory management. In: Sustainable Supply Chains, Springer, Cham (2017) 189–218. [CrossRef] [Google Scholar]
  • M. Masoumi, A. Aghsami, M. Alipour-Vaezi, F. Jolai and B. Esmailifar, An M/M/C/K queueing system in an inventory routing problem considering congestion and response time for post-disaster humanitarian relief: a case study. J. Humanitarian Logistics Supply Chain Manage. (2021). DOI: 10.1108/JHLSCM-12-2020-0119. [Google Scholar]
  • G. Mavrotas, Effective implementation of the ε-constraint method in multi-objective mathematical programming problems. Appl. Math. Comput. 213 (2009) 455–465. [Google Scholar]
  • S.S. Moghadam, A. Aghsami and M. Rabbani, A hybrid NSGA-II algorithm for the closed-loop supply chain network design in e-commerce. RAIRO:OR 55 (2021) 1643–1674. [CrossRef] [EDP Sciences] [Google Scholar]
  • Z. Mohtashami, A. Aghsami and F. Jolai, A green closed loop supply chain design using queuing system for reducing environmental impact and energy consumption. J. Cleaner Prod. 242 (2020) 118452. [Google Scholar]
  • M. Mokhtarzadeh, R. Tavakkoli-Moghaddam, C. Triki and Y. Rahimi, A hybrid of clustering and meta-heuristic algorithms to solve a p-mobile hub location–allocation problem with the depreciation cost of hub facilities. Eng. App. Artif. Int. 98 (2021) 104121. [CrossRef] [Google Scholar]
  • B. Momeni, A. Aghsami and M. Rabbani, Designing humanitarian relief supply chains by considering the reliability of route, repair groups and monitoring route. Adv. Ind. Eng. 53 (2019) 93–126. [Google Scholar]
  • D.C. Montgomery, Introduction to Statistical Quality Control. John Wiley & Sons (2020) . [Google Scholar]
  • D.C. Montgomery, M.S. Bazaraa and A.K. Keswani, Inventory models with a mixture of backorders and lost sales. Nav. Res. Logistics Q. 20 (1973) 255–263. [Google Scholar]
  • S.M. Mousavi, V. Hajipour, S.T.A. Niaki and N. Alikar, Optimizing multi-item multi-period inventory control system with discounted cash flow and inflation: two calibrated meta-heuristic algorithms. Appl. Math. Modell. 37 (2013) 2241–2256. [CrossRef] [Google Scholar]
  • S.M. Mousavi, N. Alikar, S.T.A. Niaki and A. Bahreininejad, Optimizing a location-allocation-inventory problem in a two-echelon supply chain network: a modified fruit fly optimization algorithm. Comput. Ind. Eng. 87 (2015) 543–560. [CrossRef] [Google Scholar]
  • S.M. Mousavi, J. Sadeghi, S.T.A. Niaki and M. Tavana, A bi-objective inventory optimization model under inflation and discount using tuned Pareto-based algorithms: NSGA-II, NRGA, and MOPSO. Appl. Soft Comput. 43 (2016) 57–72. [CrossRef] [Google Scholar]
  • S.M. Mousavi, A. Bahreininejad, S.N. Musa and F. Yusof, A modified particle swarm optimizatin for solving the integrated location and inventory control problems in a two-echelon supply chain network. J. Int. Manuf. 28 (2017) 191–206. [CrossRef] [Google Scholar]
  • S.M. Mousavi, P.M. Pardalos, S.T.A. Niaki, A. Fügenschuh and M. Fathi, Solving a continuous periodic review inventory-location allocation problem in vendor-buyer supply chain under uncertainty. Comput. Ind. Eng. 128 (2019) 541–552. [CrossRef] [Google Scholar]
  • B. Naserabadi, A. Mirzazadeh and S. Nodoust, A new mathematical inventory model with stochastic and fuzzy deterioration rate under inflation. Chin. J. Eng. 2014 (2014) 21–30. [CrossRef] [Google Scholar]
  • S. Nayeri, M. Tavakoli, M. Tanhaeean and F. Jolai, A robust fuzzy stochastic model for the responsive-resilient inventory-location problem: comparison of metaheuristic algorithms. Ann. Oper. Res. (2021) 1–41. DOI: 10.1007/s10479-021-03977-6. [Google Scholar]
  • N. Nekooghadirli, R. Tavakkoli-Moghaddam, V.R. Ghezavati and A.S. Javanmard, Solving a new bi-objective location-routing-inventory problem in a distribution network by meta-heuristics. Comput. Ind. Eng. 76 (2014) 204–221. [CrossRef] [Google Scholar]
  • A. Paul, M. Pervin, S.K. Roy, N. Maculan and G.W. Weber, A green inventory model with the effect of carbon taxation. Ann. Oper. Res. (2021) 1–16. DOI: 10.1007/s10479-021-04143-8. [Google Scholar]
  • M.S. Puga and J.S. Tancrez, A heuristic algorithm for solving large location-inventory problems with demand uncertainty. Eur. J. Oper. Res. 259 (2017) 413–423. [CrossRef] [Google Scholar]
  • M. Rabbani, A. Aghsami, S. Farahmand and S. Keyhanian, Risk and revenue of a lessor’s dynamic joint pricing and inventory planning with adjustment costs under differential inflation. Int. J. Procurement Manage. 11 (2018) 1–35. [CrossRef] [Google Scholar]
  • Z. Rafie-Majd, S.H.R. Pasandideh and B. Naderi, Modelling and solving the integrated inventory-location-routing problem in a multi-period and multi-perishable product supply chain with uncertainty: Lagrangian relaxation algorithm. Comput. Chem. Eng. 109 (2018) 9–22. [Google Scholar]
  • S.A. Raza and S.M. Govindaluri, Pricing strategies in a dual-channel green supply chain with cannibalization and risk aversion. Oper. Res. Perspect. 6 (2019) 100118. [MathSciNet] [Google Scholar]
  • A. Rezaei, A. Aghsami and M. Rabbani, Supplier selection and order allocation model with disruption and environmental risks in centralized supply chain. Int. J. Syst. Assur. Eng. Manage. (2021) 1–37. Doi: 10.1007/s13198-021-01164-1. [Google Scholar]
  • S.J. Sadjadi, A. Makui, E. Dehghani and M. Pourmohammad, Applying queuing approach for a stochastic location-inventory problem with two different mean inventory considerations. Appl. Math. Modell. 40 (2016) 578–596. [CrossRef] [Google Scholar]
  • S. Saremi, S. Mirjalili and A. Lewis, Grasshopper optimisation algorithm: theory and application. Adv. Eng. Softw. 105 (2017) 30–47. [CrossRef] [Google Scholar]
  • B. Schaefer and D. Konur, Economic and environmental considerations in a continuous review inventory control system with integrated transportation decisions. Transp. Res. Part E: Logistics Transp. Rev. 80 (2015) 142–165. [CrossRef] [Google Scholar]
  • J. Sicilia, L.A. San-José and J. Garca-Laguna, An inventory model where backordered demand ratio is exponentially decreasing with the waiting time. Ann. Oper. Res. 199 (2012) 137–155. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Simangunsong, L.C. Hendry and M. Stevenson, Supply-chain uncertainty: a review and theoretical foundation for future research. Int. J. Prod. Res. 50 (2012) 4493–4523. [CrossRef] [Google Scholar]
  • K. Singha, J. Buddhakulsomsiri and P. Parthanadee, Mathematical model of inventory policy under limited storage space for continuous and periodic review policies with backlog and lost sales. Math. Prob. Eng. 2017 (2017). DOI: 10.1155/2017/4391970. [CrossRef] [Google Scholar]
  • E.B. Tirkolaee, I. Mahdavi, M.M.S. Esfahani and G.W. Weber, A robust green location-allocation-inventory problem to design an urban waste management system under uncertainty. Waste Manage. 102 (2020) 340–350. [CrossRef] [Google Scholar]
  • C.S. Tsou, J.H. Chen, C.H. Hsu and C.C. Yeh, Notice of retraction: approximating tradeoff surfaces for inventory control through evolutionary multi-objective optimization. In: Vol. 3 of 2010 IEEE International Conference on Advanced Management Science (ICAMS 2010) (2010). [Google Scholar]
  • B. Vahdani, M. Soltani, M. Yazdani and S.M. Mousavi, A three level joint location-inventory problem with correlated demand, shortages and periodic review system: robust meta-heuristics. Comput. Ind. Eng. 109 (2017) 113–129. [CrossRef] [Google Scholar]
  • D. Wang and O. Tang, Dynamic inventory rationing with mixed backorders and lost sales. Int. J. Prod. Econ. 149 (2014) 56–67. [CrossRef] [Google Scholar]
  • M. Wang, J. Wu, N. Kafa and W. Klibi, Carbon emission-compliance green location-inventory problem with demand and carbon price uncertainties. Transp. Res. Part E: Logistics Transp. Rev. 142 (2020) 102038. [CrossRef] [Google Scholar]
  • K.J. Wu, C.J. Liao, M.L. Tseng and A.S. Chiu, Exploring decisive factors in green supply chain practices under uncertainty. Int. J. Prod. Econ. 159 (2015) 147–157. [CrossRef] [Google Scholar]
  • J. Xu, Q. Qi and Q. Bai, Coordinating a dual-channel supply chain with price discount contracts under carbon emission capacity regulation. Appl. Math. Modell. 56 (2018) 449–468. [CrossRef] [Google Scholar]
  • S. Zanoni, L. Mazzoldi and M.Y. Jaber, Vendor-managed inventory with consignment stock agreement for single vendor–single buyer under the emission-trading scheme. Int. J. Prod. Res. 52 (2014) 20–31. [CrossRef] [Google Scholar]
  • L. Zhen, L. Huang and W. Wang, Green and sustainable closed-loop supply chain network design under uncertainty. J. Cleaner Prod. 227 (2019) 1195–1209. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.