Open Access
RAIRO-Oper. Res.
Volume 55, Number 6, November-December 2021
Page(s) 3427 - 3446
Published online 15 November 2021
  • W.B. Al-Othman, H.M. Lababidi, I.M. Alatiqi and K. Al-Shayji, Supply chain optimization of petroleum organization under uncertainty in market demands and prices. Eur. J. Oper. Res. 189 (2008) 822–840. [CrossRef] [Google Scholar]
  • K. Al-Qahtani and A. Elkamel, Multisite refinery and petrochemical network design: optimal integration and coordination. Ind. Eng. Chem. Res. 48 (2008) 814–826. [Google Scholar]
  • K. Al-Qahtani and A. Elkamel, Robust planning of multisite refinery networks: optimization under uncertainty. Comput. Chem. Eng. 34 (2010) 985–995. [CrossRef] [Google Scholar]
  • M.A. Al-Saleh, S.O. Duffuaa, M.A. Al-Marhoun and J.A. Al-Zayer, Impact of crude oil production on the petrochemical industry in Saudi Arabia. Energy 16 (1991) 1089–1099. [CrossRef] [Google Scholar]
  • A.M. Attia, A.M. Ghaithan and S.O. Duffuaa, A multi-objective optimization model for tactical planning of upstream oil & gas supply chains. Comput. Chem. Eng. 128 (2019) 216–227. [CrossRef] [Google Scholar]
  • A.M. Attia, A.M. Ghaithan and S.O. Duffuaa, Data on upstream segment of a hydrocarbon supply chain in Saudi Arabia. Data Brief 27 (2019) 104804. [CrossRef] [PubMed] [Google Scholar]
  • A. Azadeh, Z. Raoofi and M. Zarrin, A multi-objective fuzzy linear programming model for optimization of natural gas supply chain through a greenhouse gas reduction approach. J. Nat. Gas. Sci. Eng. 26 (2015) 702–710. [CrossRef] [Google Scholar]
  • A. Azadeh, F. Shafiee, R. Yazdanparast, J. Heydari and A. Keshvarparast, Optimum integrated design of crude oil supply chain by a unique mixed integer nonlinear programming model. Ind. Eng. Chem. Res. 56 (2017) 5734–5746. [CrossRef] [Google Scholar]
  • J.R. Birge and F. Louveaux, Introduction to Stochastic Programming. Springer Science & Business Media (2011). [CrossRef] [Google Scholar]
  • M.C. Carneiro, G.P. Ribas and S. Hamacher, Risk management in the oil supply chain: a CVaR approach. Ind. Eng. Chem. Res. 49 (2010) 3286–3294. [CrossRef] [Google Scholar]
  • R.T. Clemen and T. Reilly, Making Hard Decisions with Decision Tools Suite Update Edition. Cengage Learning, Pacific Grove, CA (2004). [Google Scholar]
  • A.J. Conejo, M. Carrión and J.M. Morales, Decision Making Under Uncertainty in Electricity Markets. Springer (2010). [CrossRef] [Google Scholar]
  • J.C. Cooper, Price elasticity of demand for crude oil: estimates for 23 countries. OPEC Rev. 27 (2003) 1–8. [CrossRef] [Google Scholar]
  • G.B. Dantzig, Linear programming under uncertainty. In: Stochastic Programming.. Springer (2010) 1–11. [Google Scholar]
  • M.A.H. Dempster, N.H. Pedron and E.A. Medova, Planning logistics operations in the oil industry. J. Oper. Res. Soc. 51 (2000) 1271–1288. [CrossRef] [Google Scholar]
  • S.O. Duffuaa, J.A. Al-Zayer, M.A. Al-Marhoun and M.A. Al-Saleh, A linear programming model to evaluate gas availability for vital industries in Saudi Arabia. J. Oper. Res. Soc. 43 (1992) 1035–1045. [CrossRef] [Google Scholar]
  • L.F. Escudero, F.J. Quintana and J. Salmerón, CORO, a modeling and an algorithmic framework for oil supply, transformation and distribution optimization under uncertainty. Eur. J. Oper. Res. 114 (1999) 638–656. [CrossRef] [Google Scholar]
  • L.J. Fernandes, S. Relvas and A.P. Barbosa-Póvoa, Downstream petroleum supply chain planning under uncertainty. In: Vol. 37 of Computer Aided Chemical Engineering (2015) 1889–1894. [CrossRef] [Google Scholar]
  • A.M. Ghaithan, An optimization model for operational planning and turnaround maintenance scheduling of oil and gas supply chain. Appl. Sci. 10 (2020) 7531. [CrossRef] [Google Scholar]
  • A.M. Ghaithan, A. Attia and S.O. Duffuaa, Multi-objective optimization model for a downstream oil and gas supply chain. Appl. Math. Model. 52 (2017) 689–708. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Ghatee and S.M. Hashemi, Optimal network design and storage management in petroleum distribution network under uncertainty. Eng. Appl. Artif. Intell. 22 (2009) 796–807. [CrossRef] [Google Scholar]
  • E.T. Iakovou, An interactive multiobjective model for the strategic maritime transportation of petroleum products: risk analysis and routing. Saf. Sci. 39 (2001) 19–29. [CrossRef] [Google Scholar]
  • C.S. Khor, A. Elkamel and P.L. Douglas, Stochastic refinery planning with risk management. Pet. Sci. Technol. 26 (2008) 1726–1740. [CrossRef] [Google Scholar]
  • H.M.S. Lababidi, M.A. El-Wakeel, I.M. Alatiqi and A.F. Al-Enzi, Optimizing the supply chain of petrochemical products under uncertain operational and economical conditions. jdt 1 (2003). [Google Scholar]
  • H.M. Lababidi, M.A. Ahmed, I.M. Alatiqi and A.F. Al-Enzi, Optimizing the supply chain of a petrochemical company under uncertain operating and economic conditions. Ind. Eng. Chem. Res. 43 (2004) 63–73. [CrossRef] [Google Scholar]
  • A. Leiras, A. Elkamel and S. Hamacher, Strategic planning of integrated multirefinery networks: a robust optimization approach based on the degree of conservatism. Ind. Eng. Chem. Res. 49 (2010) 9970–9977. [CrossRef] [Google Scholar]
  • A. Leiras, G. Ribas, S. Hamacher and A. Elkamel, Literature review of oil refineries planning under uncertainty. Int. J. Oil Gas Coal Technol. 4 (2011) 156–173. [CrossRef] [Google Scholar]
  • W. Li, C.-W. Hui, P. Li and A.-X. Li, Refinery planning under uncertainty. Ind. Eng. Chem. Res. 43 (2004) 6742–6755. [CrossRef] [Google Scholar]
  • Z. Li, Y. Zhang and G. Zhang, Two-stage stochastic programming for the refined oil secondary distribution with uncertain demand and limited inventory capacity. IEEE Access 8 (2020) 119487–119500. [CrossRef] [Google Scholar]
  • C. Lima, S. Relvas and A.P.F. Barbosa-Póvoa, Downstream oil supply chain management: a critical review and future directions. Comput. Chem. Eng. 92 (2016) 78–92. [CrossRef] [Google Scholar]
  • C. Lima, S. Relvas and A. Barbosa-Povoa, Stochastic programming approach for the optimal tactical planning of the downstream oil supply chain. Comput. Chem. Eng. 108 (2018) 314–336. [CrossRef] [Google Scholar]
  • H. Liqiang and W. Guoxin, Two-stage stochastic model for petroleum supply chain from the perspective of carbon emission. In: Vol. 117 of Proceedings of the International Conference on Logistics, Engineering, Management and Computer Science (2015) 926–930. [Google Scholar]
  • C.U. Manual, Ibm ilog cplex optimization studio. Version 12 (1987) 1987–2018. [Google Scholar]
  • G. Mavrotas and K. Florios, An improved version of the augmented ε-constraint method (AUGMECON2) for finding the exact pareto set in multi-objective integer programming problems. Appl. Math. Comput. 219 (2013) 9652–9669. [MathSciNet] [Google Scholar]
  • S.A. MirHassani, An operational planning model for petroleum products logistics under uncertainty. Appl. Math. Comput. 196 (2008) 744–751. [MathSciNet] [Google Scholar]
  • S. Murray, Energy to the World: The Story of Saudi ARAMCO, 1st edition. Vol. 2. Houston, Texas, USA (2011). [Google Scholar]
  • S.M. Neiro and J.M. Pinto, Multiperiod optimization for production planning of petroleum refineries. Chem. Eng. Comm. 192 (2005) 62–88. [CrossRef] [Google Scholar]
  • F. Oliveira and S. Hamacher, Optimization of the petroleum product supply chain under uncertainty: a case study in northern brazil. Ind. Eng. Chem. Res. 51 (2012) 4279–4287. [CrossRef] [Google Scholar]
  • F. Oliveira, V. Gupta, S. Hamacher and I.E. Grossmann, A Lagrangean decomposition approach for oil supply chain investment planning under uncertainty with risk considerations. Comput. Chem. Eng. 50 (2013) 184–195. [CrossRef] [Google Scholar]
  • G.P. Ribas, S. Hamacher and A. Street, Optimization under uncertainty of the integrated oil supply chain using stochastic and robust programming. Int. Trans. Oper. Res. 17 (2010) 777–796. [CrossRef] [MathSciNet] [Google Scholar]
  • G. Ribas, A. Leiras and S. Hamacher, Tactical planning of the oil supply chain: optimization under uncertainty. Pre-An XLIIISBPO (2011). [Google Scholar]
  • H. Sahebi, S. Nickel and J. Ashayeri, Strategic and tactical mathematical programming models within the crude oil supply chain context – A review. Comput. Chem. Eng. 68 (2014) 56–77. [Google Scholar]
  • M. Stewart and K.E. Arnold, Surface Production Operations, Design of Oil Handling Systems and Facilities, 3rd edition. Vol. 1. Gulf Professional Publishing, Amsterdam, Boston, Houston, TX (2007). [Google Scholar]
  • K. Tong, Y. Feng and G. Rong, Planning under demand and yield uncertainties in an oil supply chain. Ind. Eng. Chem. Res. 51 (2012) 814–834. [CrossRef] [Google Scholar]
  • J. Yang, H. Gu and G. Rong, Supply chain optimization for refinery with considerations of operation mode changeover and yield fluctuations. Ind. Eng. Chem. Res. 49 (2010) 276–287. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.