Open Access
RAIRO-Oper. Res.
Volume 55, Number 6, November-December 2021
Page(s) 3493 - 3511
Published online 25 November 2021
  • H. Abdel-wahab and T. Kameda, Scheduling to minimize maximum cumulative cost subject to series-parallel precedence constraints. Oper. Res. 26 (1978) 141–158. [CrossRef] [Google Scholar]
  • M. Bartusch, R. Möhring and F. Radermacher, Scheduling project network with resource constraints and time windows. Ann. Oper. Res. 16 (1988) 201–240. [CrossRef] [Google Scholar]
  • J. Carlier and A.H.G. Rinnooy Kan, Scheduling subject to nonrenewable-resource constraints. Oper. Res. Lett. 1 (1982) 52–55. [CrossRef] [Google Scholar]
  • J. Carlier, A. Moukrim and H. Xu, The project scheduling problem with production and consumption of resources: a list-scheduling based algorithm. Discrete Appl. Math. 157 (2009) 3631–3642. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Carlier, A. Moukrim and A. Sahli, Lower bounds for the event scheduling problem with consumption and production of resources. Discrete Appl. Math. 234 (2016) 178–194. [Google Scholar]
  • J. Carlier, E. Pinson, A. Sahli and A. Jouglet, An O(n2) algorithm for time-bound adjustments for the cumulative scheduling problem. Eur. J. Oper. Res. 286 (2020) 468–476. [CrossRef] [Google Scholar]
  • J. Carlier, A. Sahli, A. Jouglet and E. Pinson, A faster checker of the energetic reasoning for the cumulative scheduling problem. Int. J. Prod. Res. (2021) 1–16. DOI: 10.1080/00207543.2021.1923853. [CrossRef] [Google Scholar]
  • A. Cesta, A. Oddi and S. Smith, A constraint-based method for project scheduling with time windows. J. Heuristics 8 (2002) 109–136. [CrossRef] [Google Scholar]
  • S.J. Edwards, D. Baatar, K. Smith-Miles and A.T. Ernst, Symmetry breaking of identical projects in the high-multiplicity rcpsp/max. J. Oper. Res. Soc. 72 (2021) 1822–1843. [CrossRef] [Google Scholar]
  • S. Hartmann and D. Briskorn, An updated survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 297 (2021) 1–14. [Google Scholar]
  • S. Johnson, Optimal two and three-stage production schedules with setup times included. Nav. Res. Logistics Q. 1 (1954) 61–68. [CrossRef] [Google Scholar]
  • E. Kaplan and A. Amir, A fast feasibility test for relocation problems. Eur. J. Oper. Res. 35 (1988) 201–205. [CrossRef] [Google Scholar]
  • I. Krimi, R. Benmansour, S. Hanafi and N. Elhachemi, Two-machine flow shop with synchronized periodic maintenance. RAIRO-Oper. Res. 53 (2019) 351–365. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • P. Laborie, Algorithms for propagating resource constraints in AI planning and scheduling: existing approaches and new results. Artif. Intell. 143 (2002) 151–188. [Google Scholar]
  • L.V.D. Melo and T.A.D. Queiroz, Integer linear programming formulations for the RCPSP considering multi-skill, multi-mode, and minimum and maximum time lags. IEEE Lat. Am. Trans. 19 (2021) 5–16. [CrossRef] [Google Scholar]
  • C.L. Monma, The two-machine maximum flow time problem with series-parallel precedence constraints: an algorithm and extensions. Oper. Res. 27 (1979) 792–798. [CrossRef] [Google Scholar]
  • C.L. Monma and J.B. Sidney, Sequencing with series-parallel precedence constraints. Math. Oper. Res. 4 (1979) 215–224. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Neumann and C. Schwindt, Project scheduling with inventory constraints. Math. Methods Oper. Res. 56 (2002) 513–533. [Google Scholar]
  • K. Neumann and J. Zhan, Heuristics for the minimum project-duration problem with minimal and maximal time lags under fixed resource constraints. J. Intell. Manuf. 19 (1997) 205–217. [Google Scholar]
  • K. Neumann, C. Schwindt and J. Zimmermann, Resource-constrained project scheduling with time windows: recent developments and new applications. In: Perspectives in Modern Project Scheduling, edited by J. Jozefowska and J. Weglarz. Kluwer, Boston (2006) 375–407. [Google Scholar]
  • K.V. Palem and B.B. Simons, Scheduling time-critical instructions on risc machines. ACM Trans. Program. Lang. Syst. 15 (1993) 632–658. [CrossRef] [Google Scholar]
  • C.H. Papadimitriou and M. Yannakakis, Scheduling interval-ordered tasks. SIAM J. Comput. 8 (1979) 405–409. [CrossRef] [MathSciNet] [Google Scholar]
  • Y. Sekiguchi, A decomposition theory based on a dominance relation and composite jobs. Discrete Appl. Math. 17 (1987) 187–211. [CrossRef] [MathSciNet] [Google Scholar]
  • R. Sethi, Complete register allocation problems. SIAM J. Comput. 4 (1975) 226–248. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Singh, J.S. Oberoi and D. Singh, Multi-objective permutation and non-permutation flow shop scheduling problems with no-wait: a systematic literature review. RAIRO-Oper. Res. 55 (2021) 27–50. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • F. Sourd and J. Rogerie, Continuous filling and emptying of storage systems in constraint-based scheduling. Eur. J. Oper. Res. 165 (2005) 510–524. [CrossRef] [Google Scholar]
  • J. Valdes, R. Tarjan and E. Lawler, The recognition of series-parallel digraphs. SIAM J. Comput. 11 (1982) 298–313. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.