Open Access
Issue
RAIRO-Oper. Res.
Volume 55, Number 6, November-December 2021
Page(s) 3617 - 3638
DOI https://doi.org/10.1051/ro/2021165
Published online 10 December 2021
  • P. Anderson and N.C. Peterson, A procedure for ranking efficient units in data envelopment analysis. Manage. Sci. 39 (1993) 1261–1264. [CrossRef] [Google Scholar]
  • M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, 3rd edition. John Wiley and Sons (2006). [CrossRef] [Google Scholar]
  • P. Byrnes, R. Fare and S. Grosskopf, Measuring productive efficiency: An application to Illinois strip mines. Manag. Sci. 30 (1984) 671–681. [CrossRef] [Google Scholar]
  • R.G. Chambers, Y. Chung and R. Färe, Benefit and distance functions. J. Econ. Theory 70 (1996) 407–419. [CrossRef] [Google Scholar]
  • A. Charnes, W.W. Cooper and E. Rhodes, Measuring the efficiency of decision making units. Eur. J. Oper. Res. 2 (1978) 429–444. [Google Scholar]
  • Y. Chen, Measuring super-efficiency in DEA in the presence of infeasibility. Eur. J. Oper. Res. 161 (2005) 545–551. [CrossRef] [Google Scholar]
  • Y. Chen, J. Du and J. Huo, Super-efficiency based on a modified directional distance function. Omega 41 (2013) 621–625. [CrossRef] [Google Scholar]
  • Y. Chen and L. Liang, Super-efficiency DEA in the presence of infeasibility: One model approach. Eur. J. Oper. Res. 213 (2011) 359–360. [CrossRef] [Google Scholar]
  • W.D. Cook, L. Liang, Y. Zha and J. Zhu, A modified super-efficiency DEA model for infeasibility. J. Oper. Res. Soc. 60 (2009) 276–281. [CrossRef] [Google Scholar]
  • J. Doyle and R. Green, Data envelopment analysis and multiple criteria decision making. Omega 21 (1993) 713–715. [CrossRef] [Google Scholar]
  • J. Doyle and R. Green, Efficiency and cross-efficiency in DEA: derivations, meanings and uses. J. Oper. Res. Soc. 45 (1994) 567–578. [CrossRef] [Google Scholar]
  • J. Du, C. Chen, Y. Chen, W.D. Cook and J. Zhu, Additive super-efficiency in integer-valued data envelopment analysis. Eur. J. Oper. Res. 218 (2012) 186–192. [CrossRef] [MathSciNet] [Google Scholar]
  • A. Emrouznejad, A.L. Anouze and E. Thanassoulis, A semi-oriented radial measure for measuring the efficiency of decision making units with negative data, using DEA. Eur. J. Oper. Res. 200 (2010) 297–304. [Google Scholar]
  • M. Gnewuch and K. Wohlrabe, Super-efficiency of education institutions: an application to economics departments. Edu. Econ. 26 (2018) 610–623. [CrossRef] [Google Scholar]
  • A. Hadi-Vencheh and A. Esmaeilzadeh, A new super-efficiency model in the presence of negative data. J. Oper. Res. Soc. 64 (2013) 396–401. [CrossRef] [Google Scholar]
  • M. Halme, T. Pro and M. Koivu, Dealing with interval-scale data in data envelopment analysis. Eur. J. Oper. Res. 137 (2002) 22–27. [CrossRef] [Google Scholar]
  • H.S. Lee, C.W. Chu and J. Zhu, Super-efficiency DEA in the presence of infeasibility. Eur. J. Oper. Res. 212 (2011) 141–147. [CrossRef] [Google Scholar]
  • H.S. Lee and J. Zhu, Super-efficiency infeasibility and zero data in DEA. Eur. J. Oper. Res. 216 (2012) 429–433. [CrossRef] [Google Scholar]
  • R. Lin and Z. Chen, Super-efficiency measurement under variable return to scale: an approach based on a new directional distance function. J. Oper. Res. Soc. 66 (2015) 1506–1510. [CrossRef] [Google Scholar]
  • R. Lin and Z. Chen, A directional distance-based super-efficiency DEA model handling negative data. J. Oper. Res. Soc. 68 (2017) 1312–1322. [CrossRef] [Google Scholar]
  • R. Lin and Y. Liu, Super-efficiency based on the directional distance function in the presence of negative data. Omega 85 (2019) 26–34. [CrossRef] [Google Scholar]
  • C.A.K. Lovell and A.P.B. Rouse, Equivalent standard DEA models to provide super-efficiency scores. J. Oper. Res. Soc. 54 (2003) 101–108. [CrossRef] [Google Scholar]
  • R.K. Matin and R.K. Azizi, Modified semi-oriented Radial Measure for measuring the efficiency of DMUs. In: With 3rd Operation, Research Conference. (2010). [Google Scholar]
  • J.T. Pastor, Translation invariance in data envelopment analysis: a generalization. Ann. Oper. Res. 66 (1996) 93–102. [Google Scholar]
  • M.C.S. Portela, E. Thanassoulis and G. Simpson, Negative data in DEA: a directional distance approach applied to bank branches. J. Oper. Res. Soc. 55 (2004) 1111–1121. [CrossRef] [Google Scholar]
  • S. Ray, The directional distance function and measurement of super-efficiency: an application to airlines data. J. Oper. Res. Soc. 59 (2008) 788–797. [CrossRef] [Google Scholar]
  • L.M. Seiford and J. Zhu, Infeasibility of super-efficiency data envelopment analysis models. INFORS 37 (1999) 174–187. [Google Scholar]
  • J.A. Sharp, W. Meng and W. Liu, A modified slacks-based measure model for data envelopment analysis with natural negative outputs and inputs. J. Oper. Res. Soc. 57 (2007) 1–6. [Google Scholar]
  • T.J. Stewart, Data envelopment analysis and multiple criteria decision-making – a response. Omega 22 (1994) 205–206. [CrossRef] [Google Scholar]
  • R.M. Thrall, Duality, classification and slacks in DEA. Ann. Oper. Res. 66 (1996) 109–138. [Google Scholar]
  • C. Tofallis, Improving discernment in DEA using profiling. Omega 24 (1996) 361–364. [CrossRef] [Google Scholar]
  • K. Tone, A slacks-based measure of super-efficiency in data envelopment analysis. Eur. J. Oper. Res. 143 (2002) 32–41. [CrossRef] [Google Scholar]
  • M. Xue and P.T. Harker, Note: ranking DMUs with infeasible super-efficiency DEA models. Manage. Sci. 48 (2002) 705–710. [CrossRef] [Google Scholar]
  • S.H. Yu and C.W. Hsu, A unified extension of super-efficiency in additive data envelopment analysis with integer-valued inputs and outputs: an application to a municipal bus system. Ann. Oper. Res. 287 (2020) 515–535. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Zhu, Robustness of the efficient DMUs in data envelopment analysis. Eur. J. Oper. Res. 90 (1996) 451–460. [CrossRef] [Google Scholar]
  • J. Zhu, Super-efficiency and DEA sensitivity analysis. Eur. J. Oper. Res. 129 (2001) 443–455. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.