Open Access
RAIRO-Oper. Res.
Volume 55, Number 6, November-December 2021
Page(s) 3715 - 3742
Published online 17 December 2021
  • D. Chakraborty and S.K. Bhuiya, A continuous review inventory model with fuzzy service level constraint and fuzzy random variable parameters. Int. J. Appl. Comput. Math. 3 (2017) 3159–3174. [CrossRef] [MathSciNet] [Google Scholar]
  • D. Chakraborty, D. Guha and B. Dutta, Multi-objective optimization problem under fuzzy rule constraints using particle swarm optimization. Soft Comput. 20 (2016) 2245–2259. [Google Scholar]
  • C.K. Chan, W.H. Wong, A. Langevin and Y. Lee, An integrated production-inventory model for deteriorating items with consideration of optimal production rate and deterioration during delivery. Int. J. Prod. Econ. 189 (2017) 1–13. [CrossRef] [Google Scholar]
  • H.-C. Chang, J.-S. Yao and L.-Y. Ouyang, Fuzzy mixture inventory model involving fuzzy random variable lead time demand and fuzzy total demand. Eur. J. Oper. Res. 169 (2006) 65–80. [CrossRef] [Google Scholar]
  • Z. Chen, Optimization of production inventory with pricing and promotion effort for a single-vendor multi-buyer system of perishable products. Int. J. Prod. Econ. 203 (2018) 333–349. [CrossRef] [Google Scholar]
  • S.-M. Chen and L.-W. Lee, Fuzzy multiple attributes group decision-making based on the ranking values and the arithmetic operations of interval type-2 fuzzy sets. Expert Syst. App. 37 (2010) 824–833. [CrossRef] [Google Scholar]
  • T.-Y. Chen, C.-H. Chang and J.-F.R. Lu, The extended qualiflex method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making. Eur. J. Oper. Res. 226 (2013) 615–625. [CrossRef] [Google Scholar]
  • X. Chen, S. Benjaafar and A. Elomri, The carbon-constrained EOQ. Oper. Res. Lett. 41 (2013) 172–179. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Cococcioni, P. Ducange, B. Lazzerini and F. Marcelloni, A pareto-based multi-objective evolutionary approach to the identification of mamdani fuzzy systems. Soft Comput. 11 (2007) 1013–1031. [CrossRef] [Google Scholar]
  • S. Coupland and R. John, A fast geometric method for defuzzification of type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 16 (2008) 929–941. [CrossRef] [Google Scholar]
  • S.K. De and A. Goswami, A replenishment policy for items with finite production rate and fuzzy deterioration rate. OPSEARCH 38 (2001) 419–430. [CrossRef] [Google Scholar]
  • S.K. De, P.K. Kundu and A. Goswami, An economic production quantity inventory model involving fuzzy demand rate and fuzzy deterioration rate. J. Appl. Math. Comput. 12 (2003) 251. [CrossRef] [MathSciNet] [Google Scholar]
  • O. Dey and D. Chakraborty, A fuzzy random continuous review inventory system. Int. J. Prod. Econ. 132 (2011) 101–106. [CrossRef] [Google Scholar]
  • O. Dey and D. Chakraborty, A fuzzy random periodic review system with variable lead-time and negative exponential crashing cost. Appl. Math. Model. 36 (2012) 6312–6322. [CrossRef] [MathSciNet] [Google Scholar]
  • B.K. Dey, B. Sarkar, M. Sarkar and S. Pareek, An integrated inventory model involving discrete setup cost reduction, variable safety factor, selling price dependent demand, and investment. RAIRO-Oper. Res. 53 (2019) 39–57. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • D. Dubois and H. Prade, Operations on fuzzy numbers. Int. J. Syst. Sci. 9 (1978) 613–626. [Google Scholar]
  • P. Dutta, D. Chakraborty and A.R. Roy, A single-period inventory model with fuzzy random variable demand. Math. Comput. Model. 41 (2005) 915–922. [CrossRef] [Google Scholar]
  • P. Dutta, D. Chakraborty and A. Roy, Continuous review inventory model in mixed fuzzy and stochastic environment. Appl. Math. Comput. 188 (2007) 970–980. [MathSciNet] [Google Scholar]
  • P. Ghare, A model for an exponentially decaying inventory. J. Ind. Eng. 14 (1963) 238–243. [Google Scholar]
  • S. Greenfield and F. Chiclana, Type-reduced set structure and the truncated type-2 fuzzy set. Fuzzy Sets Syst. 352 (2018) 119–141. [CrossRef] [Google Scholar]
  • S. Greenfield, F. Chiclana, S. Coupland and R. John, The collapsing method of defuzzification for discretised interval type-2 fuzzy sets. Information Sciences 179 (2009) 2055–2069. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Greenfield, F. Chiclana, R. John and S. Coupland, The sampling method of defuzzification for type-2 fuzzy sets: experimental evaluation. Inf. Sci. 189 (2012) 77–92. [CrossRef] [Google Scholar]
  • P. Grzegorzewski, Nearest interval approximation of a fuzzy number. Fuzzy Sets Syst. 130 (2002) 321–330. [CrossRef] [Google Scholar]
  • V. Hovelaque and L. Bironneau, The carbon-constrained EOQ model with carbon emission dependent demand. Int. J. Prod. Econ. 164 (2015) 285–291. [Google Scholar]
  • T. Jia, Y. Liu, N. Wang and F. Lin, Optimal production-delivery policy for a vendor–buyers integrated system considering postponed simultaneous delivery. Comput. Ind. Eng. 99 (2016) 1–15. [CrossRef] [Google Scholar]
  • N.N. Karnik and J.M. Mendel, Centroid of a type-2 fuzzy set. Inf. Sci. 132 (2001) 195–220. [CrossRef] [Google Scholar]
  • A. Khanna, P. Gautam, B. Sarkar and C.K. Jaggi, Integrated vendor–buyer strategies for imperfect production systems with maintenance and warranty policy. RAIRO-Oper. Res. 54 (2020) 435–450. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • R.S. Kumar and A. Goswami, A continuous review production–inventory system in fuzzy random environment: minmax distribution free procedure. Comput. Ind. Eng. 79 (2015) 65–75. [CrossRef] [Google Scholar]
  • R.S. Kumar, M. Tiwari and A. Goswami, Two-echelon fuzzy stochastic supply chain for the manufacturer-buyer integrated production-inventory system. J. Intell. Manuf. 27 (2016) 875–888. [CrossRef] [Google Scholar]
  • Y.-P. Lee and C.-Y. Dye, An inventory model for deteriorating items under stock-dependent demand and controllable deterioration rate. Comput. Ind. Eng. 63 (2012) 474–482. [CrossRef] [Google Scholar]
  • J. Li, R. John, S. Coupland and G. Kendall, On Nie-Tan operator and type-reduction of interval type-2 fuzzy sets. IEEE Trans. Fuzzy Syst. 26 (2017) 1036–1039. [Google Scholar]
  • G. Li, X. He, J. Zhou and H. Wu, Pricing, replenishment and preservation technology investment decisions for non-instantaneous deteriorating items. Omega 84 (2019) 114–126. [CrossRef] [Google Scholar]
  • Y. Liang and F. Zhou, A two-warehouse inventory model for deteriorating items under conditionally permissible delay in payment. Appl. Math. Model. 35 (2011) 2221–2231. [Google Scholar]
  • S.-T. Lo, H.-M. Wee and W.-C. Huang, An integrated production-inventory model with imperfect production processes and weibull distribution deterioration under inflation. Int. J. Prod. Econ. 106 (2007) 248–260. [CrossRef] [Google Scholar]
  • X. Ma, P. Wu, L. Zhou, H. Chen, T. Zheng and J. Ge, Approaches based on interval type-2 fuzzy aggregation operators for multiple attribute group decision making. Int. J. Fuzzy Syst. 18 (2016) 697–715. [CrossRef] [MathSciNet] [Google Scholar]
  • J.M. Mendel and X. Liu, New closed-form solutions for karnik-mendel algorithm+ defuzzification of an interval type-2 fuzzy set. In: 2012 IEEE International Conference on Fuzzy Systems. IEEE (2012) 1–8. [Google Scholar]
  • D.J. Mohanty, R.S. Kumar and A. Goswami, A two-warehouse inventory model for non-instantaneous deteriorating items over stochastic planning horizon. J. Ind. Prod. Eng. 33 (2016) 516–532. [Google Scholar]
  • D.J. Mohanty, R.S. Kumar and A. Goswami, Vendor-buyer integrated production-inventory system for imperfect quality item under trade credit finance and variable setup cost. RAIRO-Oper. Res. 52 (2018) 1277–1293. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • J.E. Moreno, M.A. Sanchez, O. Mendoza, A. Rodrguez-Daz, O. Castillo, P. Melin and J.R. Castro, Design of an interval type-2 fuzzy model with justifiable uncertainty. Inf. Sci. 513 (2020) 206–221. [CrossRef] [Google Scholar]
  • M. Nie and W.W. Tan, Towards an efficient type-reduction method for interval type-2 fuzzy logic systems. In: Fuzzy Systems, 2008. FUZZ-IEEE 2008 (IEEE World Congress on Computational Intelligence). IEEE International Conference on Fuzzy Systems. IEEE (2008) 1425–1432. [Google Scholar]
  • L.-Y. Ouyang, K.-S. Wu and C.-T. Yang, A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments. Comput. Ind. Eng. 51 (2006) 637–651. [CrossRef] [Google Scholar]
  • B. Pal, A. Mandal and S.S. Sana, Two-phase deteriorated supply chain model with variable demand and imperfect production process under two-stage credit financing. RAIRO-Oper. Res. 55 (2021) 457–480. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • V. Pando, L.A. San-José, J. Garca-Laguna and J. Sicilia, Optimal lot-size policy for deteriorating items with stock-dependent demand considering profit maximization. Comput. Ind. Eng. 117 (2018) 81–93. [CrossRef] [Google Scholar]
  • H. Rau, M.-Y. Wu and H.-M. Wee, Integrated inventory model for deteriorating items under a multi-echelon supply chain environment. Int. J. Prod. Econ. 86 (2003) 155–168. [CrossRef] [Google Scholar]
  • C. Rout, R.S. Kumar, D. Chakraborty and A. Goswami, An EPQ model for deteriorating items with imperfect production, inspection errors, rework and shortages: a type-2 fuzzy approach. OPSEARCH 56 (2019) 657–688. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Rout, A. Paul, R.S. Kumar, D. Chakraborty and A. Goswami, Cooperative sustainable supply chain for deteriorating item and imperfect production under different carbon emission regulations. J. Cleaner Prod. 272 (2020) 122170. [CrossRef] [Google Scholar]
  • C. Rout, D. Chakraborty and A. Goswami, An EPQ model for deteriorating items with imperfect production, two types of inspection errors and rework under complete backordering. Int. Game Theory Rev. 22 (2020) 2040011. [CrossRef] [MathSciNet] [Google Scholar]
  • C. Rout, D. Chakraborty and A. Goswami, A production inventory model for deteriorating items with backlog-dependent demand. RAIRO-Oper. Res. 55 (2021) S549–S570. [CrossRef] [EDP Sciences] [Google Scholar]
  • T.A. Runkler, C. Chen and R. John, Type reduction operators for interval type-2 defuzzification. Inf. Sci. 467 (2018) 464–476. [CrossRef] [Google Scholar]
  • B. Sarkar, B.K. Dey, M. Sarkar, S. Hur, B. Mandal and V. Dhaka, Optimal replenishment decision for retailers with variable demand for deteriorating products under a trade-credit policy. RAIRO-Oper. Res. 54 (2020) 1685–1701. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • S. Sarkar, B.C. Giri and A.K. Sarkar, A vendor–buyer inventory model with lot-size and production rate dependent lead time under time value of money. RAIRO-Oper. Res. 54 (2020) 961–979. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • A. Sengupta and T.K. Pal, Fuzzy Preference Ordering of Interval Numbers in Decision Problems. Springer. Vol. 238 (2009). [CrossRef] [Google Scholar]
  • A. Sengupta, T.K. Pal and D. Chakraborty, Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets Syst. 119 (2001) 129–138. [CrossRef] [Google Scholar]
  • A.K. Sharma, S. Tiwari, V. Yadavalli and C.K. Jaggi, Optimal trade credit and replenishment policies for non-instantaneous deteriorating items. RAIRO-Oper. Res. 54 (2020) 1793–1826. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • E. Shekarian, N. Kazemi, S.H. Abdul-Rashid and E.U. Olugu, Fuzzy inventory models: a comprehensive review. Appl. Soft Comput. 55 (2017) 588–621. [CrossRef] [Google Scholar]
  • K. Skouri, I. Konstantaras, S. Papachristos and I. Ganas, Inventory models with ramp type demand rate, partial backlogging and weibull deterioration rate. Eur. J. Oper. Res. 192 (2009) 79–92. [CrossRef] [Google Scholar]
  • A.H. Tai, Y. Xie, W. He and W.-K. Ching, Joint inspection and inventory control for deteriorating items with random maximum lifetime. Int. J. Prod. Econ. 207 (2019) 144–162. [CrossRef] [Google Scholar]
  • A.A. Taleizadeh, S.T. Niaki and A. Makui, Multiproduct multiple-buyer single-vendor supply chain problem with stochastic demand, variable lead-time, and multi-chance constraint. Expert Syst. App. 39 (2012) 5338–5348. [CrossRef] [Google Scholar]
  • A.D. Torshizi and M.H.F. Zarandi, Hierarchical collapsing method for direct defuzzification of general type-2 fuzzy sets. Inf. Sci. 277 (2014) 842–861. [CrossRef] [Google Scholar]
  • A.D. Torshizi, M.H.F. Zarandi and H. Zakeri, On type-reduction of type-2 fuzzy sets: a review. Appl. Soft Comput. 27 (2015) 614–627. [CrossRef] [Google Scholar]
  • G.A. Widyadana and H.M. Wee, An economic production quantity model for deteriorating items with multiple production setups and rework. Int. J. Prod. Econ. 138 (2012) 62–67. [Google Scholar]
  • G.A. Widyadana, L.E. Cárdenas-Barrón and H.M. Wee, Economic order quantity model for deteriorating items with planned backorder level. Math. Comput. Model. 54 (2011) 1569–1575. [Google Scholar]
  • K.-S. Wu, L.-Y. Ouyang and C.-T. Yang, An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging. Int. J. Prod. Econ. 101 (2006) 369–384. [CrossRef] [Google Scholar]
  • C. Yan, A. Banerjee and L. Yang, An integrated production–distribution model for a deteriorating inventory item. Int. J. Prod. Econ. 133 (2011) 228–232. [Google Scholar]
  • P.-C. Yang and H.-M. Wee, A single-vendor and multiple-buyers production-inventory policy for a deteriorating item. Eur. J. Oper. Res. 143 (2002) 570–581. [CrossRef] [Google Scholar]
  • M.-J. Yao and C.-C. Chiou, On a replenishment coordination model in an integrated supply chain with one vendor and multiple buyers. Eur. J. Oper. Res. 159 (2004) 406–419. [CrossRef] [Google Scholar]
  • S.H. Yoo, D. Kim and M.-S. Park, Economic production quantity model with imperfect-quality items, two-way imperfect inspection and sales return. Int. J. Prod. Econ. 121 (2009) 255–265. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.