Open Access
Issue |
RAIRO-Oper. Res.
Volume 55, Number 6, November-December 2021
|
|
---|---|---|
Page(s) | 3541 - 3574 | |
DOI | https://doi.org/10.1051/ro/2021155 | |
Published online | 25 November 2021 |
- S. Alumur and B.Y. Kara, Network hub location problems: the state of the art. Eur. J. Oper. Res. 190 (2008) 1–21. [CrossRef] [Google Scholar]
- S.A. Alumur, S. Nickel and F. Saldanha-da-Gama, Hub location under uncertainty. Transp. Res. Part B Methodol. 46 (2012) 529–543. [CrossRef] [Google Scholar]
- S.A. Alumur, H. Yaman and B.Y. Kara, Hierarchical multimodal hub location problem with time-definite deliveries. Transp. Res. Part E Logist. Transp. Rev. 48 (2012) 1107–1120. [CrossRef] [Google Scholar]
- S.A. Alumur, S. Nickel, F. Saldanha-da-Gama and Y. Seçerdin, Multi-period hub network design problems with modular capacities. Ann. Oper. Res. 246 (2016) 289–312. [CrossRef] [MathSciNet] [Google Scholar]
- A.B. Arabani and R.Z. Farahani, Facility location dynamics: an overview of classifications and applications. Comput. Ind. Eng. 62 (2012) 408–420. [Google Scholar]
- T. Aykin, Lagrangian relaxation based approaches to capacitated hub-and-spoke network design problem. Eur. J. Oper. Res. 79 (1994) 501–523. [CrossRef] [Google Scholar]
- T. Aykin, Networking policies for hub-and-spoke systems with application to the air transportation system. Transp. Sci. 29 (1995) 201–221. [CrossRef] [Google Scholar]
- M. Barth and K. Boriboonsomsin, Energy and emissions impacts of a freeway-based dynamic eco-driving system. Transp. Res. Part D Transp. Environ. 14 (2009) 400–410. [CrossRef] [Google Scholar]
- M. Barth, T. Younglove and G. Scora, Development of a Heavy-duty Diesel Modal Emissions and Fuel Consumption Model. Calif. Partners Adv. Transit Highw., Institute of Transportation Studies. University of California at Berkeley (2005). [Google Scholar]
- M. Bashiri, M. Rezanezhad and R. Tavakkoli-Moghaddam, H. Hasanzadeh, Mathematical modeling for a p-mobile hub location problem in a dynamic environment by a genetic algorithm. Appl. Math. Model. 54 (2018) 151–169. [CrossRef] [MathSciNet] [Google Scholar]
- J.E. Beasley, OR-library: hub location http//people.brunel.ac.uk/mastjjb/jeb/orlib/phubinfo.html (Accessed 01.05. 15) (1990). [Google Scholar]
- T. Bektas and G. Laporte, The pollution-routing problem. Transp. Res. Part B Methodol. 45 (2011) 1232–1250. [CrossRef] [Google Scholar]
- D. Bertsimas and M. Sim, Robust discrete optimization and network flows 1 introduction. Oper. Res. 71 (2002) 1–26. [Google Scholar]
- D. Bertsimas and M. Sim, Robust discrete optimization and network flows. Math. Program. 98 (2003) 49–71. [Google Scholar]
- F.H. Boukani, B.F. Moghaddam and M.S. Pishvaee, Robust optimization approach to capacitated single and multiple allocation hub location problems. Comput. Appl. Math. 35 (2016) 45–60. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Campbell, Locating transportation terminals to serve an expanding demand. Transp. Res. Part B Methodol. 24 (1990) 173–192. [CrossRef] [Google Scholar]
- J.F. Campbell, Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72 (1994) 387–405. [CrossRef] [Google Scholar]
- J.F. Campbell, Hub location and the p-hub median problem. Oper. Res. 44 (1996) 923–935. [CrossRef] [MathSciNet] [Google Scholar]
- J.F. Campbell and M.E. O’Kelly, Twenty-five years of hub location research. Transp. Sci. 46 (2012) 153–169. [CrossRef] [Google Scholar]
- M. Campbell, J. Ernst and A. Krishnamoorthy, Hub location problems. In: Facility Location: Application and Theory. Springer, Berlin (2002). [Google Scholar]
- I. Contreras, J.-F. Cordeau and G. Laporte, The dynamic uncapacitated hub location problem. Transp. Sci. 45 (2011) 18–32. [CrossRef] [Google Scholar]
- I. Correia, S. Nickel and F. Saldanha-da-Gama, A stochastic multi-period capacitated multiple allocation hub location problem: formulation and inequalities. Omega 74 (2018) 122–134. [CrossRef] [Google Scholar]
- E.M. de Sá, R. Morabito and R.S. de Camargo, Benders decomposition applied to a robust multiple allocation incomplete hub location problem. Comput. Oper. Res. 89 (2018) 31–50. [CrossRef] [MathSciNet] [Google Scholar]
- Z. Drezner and G.O. Wesolowsky, Facility location when demand is time dependent. Nav. Res. Logist. 38 (1991) 763–777. [CrossRef] [Google Scholar]
- O. Dukkanci, M. Peker and B.Y. Kara, Green hub location problem. Transp. Res. Part E Logist. Transp. Rev. 125 (2019) 116–139. [CrossRef] [Google Scholar]
- A. Ebrahimi-Zade, H. Hosseini-Nasab and ;A. Zahmatkesh, Multi-period hub set covering problems with flexible radius: a modified genetic solution. Appl. Math. Model. 40 (2016) 2968–2982. [CrossRef] [MathSciNet] [Google Scholar]
- R.Z. Farahani, Z. Drezner and N. Asgari, Single facility location and relocation problem with time dependent weights and discrete planning horizon. Ann. Oper. Res. 167 (2009) 353–368. [CrossRef] [MathSciNet] [Google Scholar]
- R.Z. Farahani, M. Hekmatfar, A.B. Arabani and E. Nikbakhsh, Hub location problems: a review of models, classification, solution techniques, and applications. Comput. Ind. Eng. 64 (2013) 1096–1109. [CrossRef] [Google Scholar]
- P. Fattahi and Z. Shakeri Kebria, A bi objective dynamic reliable hub location problem with congestion effects. Int. J. Ind. Eng. Prod. Res. 31 (2020) 63–74. [Google Scholar]
- F. Fotuhi and N. Huynh, A reliable multi-period intermodal freight network expansion problem. Comput. Ind. Eng. 115 (2018) 138–150. [CrossRef] [Google Scholar]
- S. Gelareh, Hub location models in public transport planning. Ph.D. disseration. Universitätsbibliothek (2008). [Google Scholar]
- S. Gelareh, R.N. Monemi and S. Nickel, Multi-period hub location problems in transportation. Transp. Res. Part E Logist. Transp. Rev. 75 (2015) 67–94. [CrossRef] [Google Scholar]
- N. Ghaffari-Nasab, M. Ghazanfari and E. Teimoury, Robust optimization approach to the design of hub-and-spoke networks. Int. J. Adv. Manuf. Technol. 76 (2015) 1091–1110. [CrossRef] [Google Scholar]
- A. Ghodratnama, R. Tavakkoli-Moghaddam and A. Azaron, A fuzzy possibilistic bi-objective hub covering problem considering production facilities, time horizons and transporter vehicles. Int. J. Adv. Manuf. Technol. 66 (2013) 187–206. [CrossRef] [Google Scholar]
- S.L. Hakimi, Optimum locations of switching centers and the absolute centers and medians of a graph. Oper. Res. 12 (1964) 450–459. [Google Scholar]
- E. Holden, K. Linnerud and D. Banister, Sustainable development: our common future revisited. Glob. Environ. Chang. 26 (2014) 130–139. [CrossRef] [Google Scholar]
- E.S. Jafar Bagherinejad, M. Bashiri and Z. Abedpour, Dynamic single allocation hub location problem considering life cycle and reconstruction hubs. Prod. Oper. Manag. 11 (2020) 71–87. [Google Scholar]
- B.Y. Kara and M.R. Taner, Hub location problems: the location of interacting facilities. In: Foundations of Location Analysis. Springer (2011) 273–288. [CrossRef] [Google Scholar]
- Y. Khosravian, A. Shahandeh Nookabadi and G. Moslehi, Mathematical model for bi-objective maximal hub covering problem with periodic variations of parameters. Int. J. Eng. 32 (2019) 964–975. [Google Scholar]
- J.G. Klincewicz, Heuristics for the p-hub location problem. Eur. J. Oper. Res. 53 (1991) 25–37. [CrossRef] [Google Scholar]
- J.G. Klincewicz, Avoiding local optima in the p-hub location problem using tabu search and GRASP. Ann. Oper. Res. 40 (1992) 283–302. [CrossRef] [MathSciNet] [Google Scholar]
- A. Lozkins, M. Krasilnikov and V. Bure, Robust uncapacitated multiple allocation hub location problem under demand uncertainty: minimization of cost deviations. J. Ind. Eng. Int. 15 (2019) 199–207. [CrossRef] [Google Scholar]
- A. Makui, M. Rostami, E. Jahani and A. Nikui, A multi-objective robust optimization model for the capacitated P-hub location problem under uncertainty. Manag. Sci. Lett. 2 (2002) 525–534. [Google Scholar]
- M. Merakl and H. Yaman, Robust intermodal hub location under polyhedral demand uncertainty. Transp. Res. Part B Methodol. 86 (2016) 66–85. [CrossRef] [Google Scholar]
- M. Merakl and H. Yaman, A capacitated hub location problem under hose demand uncertainty. Comput. Oper. Res. 88 (2017) 58–70. [CrossRef] [MathSciNet] [Google Scholar]
- M. Mohammadi, R. Tavakkoli-Moghaddam and R. Rostami, A multi-objective imperialist competitive algorithm for a capacitated hub covering location problem. Int. J. Ind. Eng. Comput. 2 (2011) 671–688. [Google Scholar]
- M. Mohammadi, F. Jolai and R. Tavakkoli-Moghaddam, Solving a new stochastic multi-mode p-hub covering location problem considering risk by a novel multi-objective algorithm. Appl. Math. Model. 37 (2013) 10053–10073. [CrossRef] [MathSciNet] [Google Scholar]
- M. Mohammadi, S.A. Torabi and R. Tavakkoli-Moghaddam, Sustainable hub location under mixed uncertainty. Transp. Res. Part E Logist. Transp. Rev. 62 (2014) 89–115. [CrossRef] [MathSciNet] [Google Scholar]
- F. Niakan, B. Vahdani and M. Mohammadi, A multi-objective optimization model for hub network design under uncertainty: an inexact rough-interval fuzzy approach. Eng. Optim. 47 (2015) 1670–1688. [CrossRef] [MathSciNet] [Google Scholar]
- S. Nickel and F. Saldanha-da-Gama, Multi-period facility location. In: Location Science. Springer (2019) 303–326. [CrossRef] [Google Scholar]
- M.E. O’kelly, A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 32 (1987) 393–404. [CrossRef] [Google Scholar]
- M.E. O’Kelly, Hub facility location with fixed costs. Pap. Reg. Sci. 71 (1992) 293–306. [CrossRef] [Google Scholar]
- Y. Rahimi, R. Tavakkoli-Moghaddam, M. Mohammadi and M. Sadeghi, Multi-objective hub network design under uncertainty considering congestion: an M/M/c/K queue system. Appl. Math. Model. 40 (2016) 4179–4198. [CrossRef] [MathSciNet] [Google Scholar]
- J. Razmi and R. Tavakkoli-Moghaddam, Multi-objective invasive weed optimization for stochastic green hub location routing problem with simultaneous pick-ups and deliveries. Econ. Comput. Econ. Cybern. Stud. Res. 47 (2013) 247–266. [Google Scholar]
- S. Sedehzadeh, R. Tavakkoli-Moghaddam, M. Mohammadi and F. Jolai, Solving a new priority M/M/C Queue model for a multi-mode hub covering location problem by multi-objective parallel simulated annealing. Econ. Comput. Econ. Cybern. Stud. Res. 48 (2014) 299–318. [Google Scholar]
- M. Shahabi and A. Unnikrishnan, Robust hub network design problem. Transp. Res. Part E Logist. Transp. Rev. 70 (2014) 356–373. [CrossRef] [Google Scholar]
- H.D. Sherali, On mixed-integer zero-one representations for separable lower-semicontinuous piecewise-linear functions. Oper. Res. Lett. 28 (2001) 155–160. [CrossRef] [MathSciNet] [Google Scholar]
- F. Taghipourian, I. Mahdavi, N. Mahdavi-Amiri and A. Makui, A fuzzy programming approach for dynamic virtual hub location problem. Appl. Math. Model. 36 (2012) 3257–3270. [CrossRef] [MathSciNet] [Google Scholar]
- E.-G. Talbi and R. Todosijević, The robust uncapacitated multiple allocation p-hub median problem. Comput. Ind. Eng. 110 (2017) 322–332. [CrossRef] [Google Scholar]
- R.S. Toh and R.G. Higgins, The impact of hub and spoke network centralization and route monopoly on domestic airline profitability. Transp. J. 24 (1985) 16–27. [Google Scholar]
- S.A. Torabi and E. Hassini, An interactive possibilistic programming approach for multiple objective supply chain master planning. Fuzzy Sets Syst. 159 (2008) 193–214. [CrossRef] [Google Scholar]
- S.S. Torkestani, S.M. Seyedhosseini, A. Makui and K. Shahanaghi, The reliable design of a hierarchical multi-modes transportation hub location problems (HMMTHLP) under dynamic network disruption (DND). Comput. Ind. Eng. 122 (2018) 39–86. [CrossRef] [Google Scholar]
- F. Yin, Y. Chen, F. Song and Y. Liu, A new distributionally robust p-hub median problem with uncertain carbon emissions and its tractable approximation method. Appl. Math. Model. 74 (2019) 668–693. [CrossRef] [MathSciNet] [Google Scholar]
- R. Zanjirani Farahani, W.Y. Szeto and S. Ghadimi, The single facility location problem with time-dependent weights and relocation cost over a continuous time horizon. J. Oper. Res. Soc. 66 (2015) 265–277. [CrossRef] [Google Scholar]
- C.A. Zetina, I. Contreras, J.-F. Cordeau and E. Nikbakhsh, Robust uncapacitated hub location. Transp. Res. Part B Methodol. 106 (2017) 393–410. [CrossRef] [Google Scholar]
- M. Zhalechian, R. Tavakkoli-Moghaddam, Y. Rahimi and F. Jolai, An interactive possibilistic programming approach for a multi-objective hub location problem: economic and environmental design. Appl. Soft Comput. 52 (2017) 699–713. [CrossRef] [Google Scholar]
- M. Zhalechian, R. Tavakkoli-Moghaddam and Y. Rahimi, A self-adaptive evolutionary algorithm for a fuzzy multi-objective hub location problem: an integration of responsiveness and social responsibility. Eng. Appl. Artif. Intell. 62 (2017) 1–16. [CrossRef] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.