Open Access
Issue |
RAIRO-Oper. Res.
Volume 56, Number 1, January-February 2022
|
|
---|---|---|
Page(s) | 199 - 211 | |
DOI | https://doi.org/10.1051/ro/2022001 | |
Published online | 07 February 2022 |
- N. Biggs, Perfect codes in graphs. J. Combin. Theory Ser. B 15 (1973) 289–296. [CrossRef] [Google Scholar]
- D. Božović and I. Peterin, Graphs with unique maximum packing of closed neighborhoods. Discuss. Math. Graph Theory, in press. (2021). DOI: 10.7151/dmgt.2304. [Google Scholar]
- M.P. Dobson, E. Hinrichsen and V. Leoni, Generalized limited packings of some graphs with a limited number of P4 partners. Theor. Comput. Sci. 579 (2015) 1–8. [CrossRef] [Google Scholar]
- R.D. Dutton, Global domination and packing numbers. Ars Combin. 101 (2011) 489–501. [MathSciNet] [Google Scholar]
- A. Estrada-Moreno, Y. Ramírez-Cruz and J.A. Rodríguez-Velázquez, On the adjacency dimension of graphs. Appl. Anal. Discrete Math. 10 (2016) 102–127. [CrossRef] [MathSciNet] [Google Scholar]
- H. Fernau and J.A. Rodríguez-Velázquez, On the (adjacency) metric dimension of corona and strong product graphs and their local variants: combinatorial and computational results. Discrete Appl. Math. 236 (2018) 183–202. [CrossRef] [MathSciNet] [Google Scholar]
- A. Gagarin and V. Zverovich, The probabilistic approach to limited packings in graphs. Discrete Appl. Math. 184 (2015) 146–153. [CrossRef] [MathSciNet] [Google Scholar]
- R. Gallant, G. Gunther, B. Hartnell and D.F. Rall, Limited packings in graphs. Discrete Appl. Math. 158 (2010) 1357–1364. [CrossRef] [MathSciNet] [Google Scholar]
- M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York, USA (1979). [Google Scholar]
- J. Geneson, Metric dimension and pattern avoidance in graphs. Discrete Appl. Math. 284 (2020) 1–7. [CrossRef] [MathSciNet] [Google Scholar]
- F. Harary and R.A. Melter, On the metric dimension of a graph. Ars Combin. 2 (1976) 191–195. [MathSciNet] [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs. Marcel Dekker Inc, New York, NY (1998). [Google Scholar]
- T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs: Advanced Topics. Marcel Dekker Inc, New York, NY (1998). [Google Scholar]
- M.A. Henning, C. Löwenstein and D. Rautenbach, Dominating sets, packings, and the maximum degree. Discrete Math. 311 (2011) 2031–2036. [CrossRef] [MathSciNet] [Google Scholar]
- M. Jannesari and B. Omoomi, The metric dimension of the lexicographic product of graphs. Discrete Math. 312 (2012) 3349–3356. [CrossRef] [MathSciNet] [Google Scholar]
- K. Junosza-Szaniawski and P. Rzażewski, On the number of 2-packings in a connected graph. Discrete Math. 312 (2012) 3444–3450. [CrossRef] [MathSciNet] [Google Scholar]
- A. Kelenc, D. Kuziak, A. Taranenko and I.G. Yero, On the mixed metric dimension of graphs. Appl. Math. Comput. 314 (2017) 429–438. [MathSciNet] [Google Scholar]
- A. Kelenc, N. Tratnik and I.G. Yero, Uniquely identifying the edges of a graph: the edge metric dimension. Discrete Appl. Math. 251 (2018) 204–220. [CrossRef] [MathSciNet] [Google Scholar]
- S. Klavžar, I. Peterin and I.G. Yero, Graphs that are simultaneously efficient open domination and efficient closed domination graphs. Discrete Appl. Math. 217 (2017) 613–621. [CrossRef] [MathSciNet] [Google Scholar]
- M. Knor, S. Majstorović, A.T. Masa Toshi, R. Škrekovski and I.G. Yero, Graphs with the edge metric dimension smaller than the metric dimension. Appl. Math. Comput. 401 (2021) 126076. [Google Scholar]
- M. Knor, R. Škrekovski and I.G. Yero, A note on the metric and edge metric dimensions of 2-connected graphs. Discrete Appl. Math., in press. DOI: 10.1016/j.dam.2021.02.020 (2021). [Google Scholar]
- J. Kratica, V. Filipovic and A. Kartelj, Edge metric dimension of some generalized Petersen graphs. Results Math. 74 (2019) 182. [CrossRef] [Google Scholar]
- D. Kuziak and I.G. Yero, Metric dimension related parameters in graphs: A survey on combinatorial, computational and applied results. Preprint arXiv:2107.04877 (2021). [Google Scholar]
- A. Meir and J.W. Moon, Relations between packing and covering numbers of a tree. Pacific J. Math. 61 (1975) 225–233. [CrossRef] [MathSciNet] [Google Scholar]
- D.A. Mojdeh, B. Samadi, A. Khodkar and H.R. Golmohammadi, On the packing numbers in graphs. Australas. J. Combin. 71 (2018) 468–475. [MathSciNet] [Google Scholar]
- I. Peterin and I.G. Yero, Edge metric dimension of some graph operations. Bull. Malays. Math. Sci. Soc. 43 (2020) 2465–2477. [CrossRef] [MathSciNet] [Google Scholar]
- I. Sahul Hamid and S. Saravanakumar, Packing parameters in graphs. Discuss. Math. Graph Theory 35 (2015) 5–6. [CrossRef] [MathSciNet] [Google Scholar]
- P.J. Slater, Leaves of trees. Congressus Numerantium 14 (1975) 549–559. [Google Scholar]
- R.C. Tillquist, R.M. Frongillo and M.E. Lladser, Getting the lay of the land in discrete space: A survey of metric dimension and its applications. Preprint arXiv:2104.07201 (2021). [Google Scholar]
- N. Zubrilina, On the edge dimension of a graph. Discrete Math. 341 (2018) 2083–2088. [CrossRef] [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.