Open Access
RAIRO-Oper. Res.
Volume 56, Number 1, January-February 2022
Page(s) 367 - 380
Published online 07 February 2022
  • J.A. Alonso and M.T. Lamata, Consistency in the analytic hierarchy process: a new approach. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 14 (2006) 445–459. [CrossRef] [Google Scholar]
  • C.A. Bana e Costa and J. Vansnick, A critical analysis of the eigenvalue method used to derive priorities in AHP. Eur. J. Oper. Res. 187 (2008) 1422–1428. [CrossRef] [Google Scholar]
  • J. Barzilai, Deriving weights from pairwise comparison matrices. J. Oper. Res. Soc. 48 (1997) 1226–1232. [CrossRef] [Google Scholar]
  • J. Barzilai, Consistency measures for pairwise comparison matrices. J. Multi-Criteria Decis. Anal. 7 (1998) 123–132. [CrossRef] [Google Scholar]
  • J. Barzilai, On the decomposition of value functions. Oper. Res. Lett. 22 (1998) 159–170. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Barzilai, W.D. Cook and B. Golany, Consistent weights for judgements matrices of the relative importance of alternatives. Oper. Res. Lett. 6 (1987) 131–134. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Behzadian, R.B. Kazemzadeh, A. Albadvi and M. Aghdasi, PROMETHEE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 200 (2010) 198–215. [Google Scholar]
  • R. Blanquero, E. Carrizosa and E. Conde, Inferring efficient weights from pairwise comparison matrices. Math. Methods Oper. Res. 64 (2006) 271–284. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bozóki, Inefficient weights from pairwise comparison matrices with arbitrarily small inconsistency. Optimization 63 (2014) 1893–1901. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bozóki and T. Rapcsák, On Saaty’s and Koczkodaj’s inconsistencies of pairwise comparison matrices. J. Global Optim. 42 (2008) 157–175. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bozóki, L. Dezsö, A. Poesz and J. Temesi, Analysis of pairwise comparison matrices: an empirical research. Ann. Oper. Res. 211 (2013) 511–528. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Bozóki, L. Csató and J. Temesi, An application of incomplete pairwise comparison matrices for ranking top tennis players. Eur. J. Oper. Res. 248 (2016) 211–218. [CrossRef] [Google Scholar]
  • M. Brunelli, Recent advances on inconsistency indices for pairwise comparisons – a commentary. Fundam. Inf. 144 (2016) 321–332. [Google Scholar]
  • M. Brunelli, Studying a set of properties of inconsistency indices for pairwise comparisons. Ann. Oper. Res. 248 (2017) 143–161. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Brunelli, A survey of inconsistency indices for pairwise comparisons. Int. J. General Syst. 47 (2018) 751–771. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Brunelli and M. Fedrizzi, Axiomatic properties of inconsistency indices for pairwise comparisons. J. Oper. Res. Soc. 66 (2015) 1–15. [CrossRef] [Google Scholar]
  • M. Brunelli, L. Canal and M. Fedrizzi, Inconsistency indices for pairwise comparison matrices: a numerical study. Ann. Oper. Res. 211 (2013) 493–509. [CrossRef] [MathSciNet] [Google Scholar]
  • B. Cavallo and L. D’Apuzzo, Preservation of preferences intensity of an inconsistent Pairwise Comparison Matrix. Int. J. Approximate Reasoning 116 (2020) 33–42. [CrossRef] [Google Scholar]
  • X. Chao, G. Kou, T. Li and Y. Peng, Jie Ke versus AlphaGo: a ranking approach using decision making method for large-scale data with incomplete information. Eur. J. Oper. Res. 265 (2018) 239–247. [CrossRef] [Google Scholar]
  • L. Csató, Ranking by pairwise comparisons for Swiss-system tournaments. Cent. Eur. J. Oper. Res. 21 (2013) 783–803. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Csató, On the ranking of a Swiss system chess team tournament. Ann. Oper. Res. 254 (2017) 17–36. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Csató, Eigenvector method and rank reversal in group decision making revisited. Fundam. Inf. 156 (2017) 169–178. [Google Scholar]
  • L. Csató, Characterization of the row geometric mean ranking with a group consensus axiom. Group Decis. Negotiation 27 (2018) 1011–1027. [CrossRef] [Google Scholar]
  • L. Csató, Characterization of an inconsistency measure for pairwise comparison matrices. Ann. Oper. Res. 261 (2018) 155–165. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Csató, Axiomatizations of inconsistency indices for triads. Ann. Oper. Res. 280 (2019) 99–110. [CrossRef] [MathSciNet] [Google Scholar]
  • L. Csató, A characterization of the Logarithmic Least Squares Method. Eur. J. Oper. Res. 276 (2019) 212–216. [CrossRef] [Google Scholar]
  • L. Csató and D.G. Petróczy, On the monotonicity of the eigenvector method. Eur. J. Oper. Res. 292 (2021) 230–237. [CrossRef] [Google Scholar]
  • L. Csató and L. Rónyai, Incomplete pairwise comparison matrices and weighting methods. Fundam. Inf. 144 (2016) 309–320. [Google Scholar]
  • L. Csató and C. Tóth, University rankings from the revealed preferences of the applicants. Eur. J. Oper. Res. 286 (2020) 309–320. [CrossRef] [Google Scholar]
  • J.S. Dyer, Remarks on the analytic hierarchy process. Manage. Sci. 36 (1990) 249–258. [CrossRef] [Google Scholar]
  • J. Fichtner, On deriving priority vectors from matrices of pairwise comparisons. Soc.-Econ. Planning Sci. 20 (1986) 341–345. [CrossRef] [Google Scholar]
  • C. Genest, F. Lapointe and S.W. Drury, On a proposal of Jensen for the analysis of ordinal pairwise preferences using Saaty’s eigenvector scaling method. J. Math. Psychol. 37 (1993) 575–610. [CrossRef] [Google Scholar]
  • B. Golden and Q. Wang, An alternate measure of consistency. In: The Analytic Hierarchy Process, Applications and Studies, edited by B. Golden, E. Wasil and P.T. Harker, Springer-Verlag, Berlin-Heidelberg (1989) 68–81. [CrossRef] [Google Scholar]
  • K. Govindan and M.B. Jepsen, ELECTRE: a comprehensive literature review on methodologies and applications. Eur. J. Oper. Res. 250 (2015) 1–29. [Google Scholar]
  • W. Holsztynski and W.W. Koczkodaj, Convergence of inconsistency algorithms for the pairwise comparisons. Inf. Process. Lett. 59 (1996) 197–202. [CrossRef] [Google Scholar]
  • C.R. Johnson, W.B. Beine and T.J. Wang, Right-left asymmetry in an eigenvector ranking procedure. J. Math. Psychol. 19 (1979) 61–64. [CrossRef] [Google Scholar]
  • P.T. Kazibudzki, An examination of performance relations among selected consistency measures for simulated pairwise judgments. Ann. Oper. Res. 244 (2016) 525–544. [CrossRef] [MathSciNet] [Google Scholar]
  • W.W. Koczkodaj, A new definition of consistency of pairwise comparisons. Math. Comput. Modell. 18 (1993) 79–84. [CrossRef] [Google Scholar]
  • W.W. Koczkodaj, Statistically accurate evidence of improved error rate by pairwise comparisons. Perceptual Motor Skills 82 (1996) 43–48. [CrossRef] [Google Scholar]
  • W. Koczkodaj and R. Szwarc, On axiomatization of inconsistency indicators for pairwise comparisons. Fundam. Inf. 132 (2014) 485–500. [Google Scholar]
  • W.W. Koczkodaj and R. Urban, Axiomatization of inconsistency indicators for pairwise comparisons. Int. J. Approximate Reasoning 94 (2018) 18–29. [CrossRef] [Google Scholar]
  • W.W. Koczkodaj, L. Mikhailov, G. Redlarski, M. Soltys, J. Szybowski, G. Tamazian, E. Wajch and K.K.F. Yuen, Important facts and observations about pairwise comparisons (the special issue edition). Fundam. Inf. 144 (2016) 291–307. [Google Scholar]
  • W.W. Koczkodaj, J.-P. Magnot, J. Mazurek, J.F. Peters, H. Rakhshani, M. Soltys, D. Strzalka, J. Szybowski and A. Tozzi, On normalization of inconsistency indicators in pairwise comparisons. Int. J. Approximate Reasoning 86 (2017) 73–79. [CrossRef] [Google Scholar]
  • K. Kulakowski, Notes on order preservation and consistency in AHP. Eur. J. Oper. Res. 245 (2015) 333–337. [CrossRef] [Google Scholar]
  • K. Kulakowski and D. Talaga, Inconsistency indices for incomplete pairwise comparisons matrices. Int. J. General Syst. 49 (2020) 174–200. [CrossRef] [MathSciNet] [Google Scholar]
  • K. Kulakowski, J. Mazurek, J. Ramík and M. Soltys, When is the condition of order preservation met? Eur. J. Oper. Res. 277 (2019) 248–254. [CrossRef] [Google Scholar]
  • J. Mazurek, Some notes on the properties of inconsistency indices in pairwise comparisons, Oper. Res. Decis. 28 (2018) 27–42. [Google Scholar]
  • J. Mazurek, On the problem of different pairwise comparison scales in the multiplicative AHP framework. Sci. Papers Univ. Pardubice 46 (2019) 124–133. [Google Scholar]
  • J. Mazurek and K. Kulakowski, Satisfaction of the condition of order preservation: a simulation study. Operations Research and Decisions 2 (2020) 77–89. [Google Scholar]
  • J. Mazurek and R. Perzina, On the inconsistency of pairwise comparisons: an experimental study. Sci. Papers Univ. Pardubice 24 (2017) 102–109. [Google Scholar]
  • J. Mazurek and J. Ramík, Some new properties of inconsistent pairwise comparison matrices. Int. J. Approximate Reasoning 113 (2019) 119–132. [CrossRef] [Google Scholar]
  • J.I. Peláez and M.T. Lamata, A new measure of inconsistency for positive reciprocal matrices. Comput. Math. App. 46 (2003) 1839–1845. [Google Scholar]
  • J. Pérez and E. Mokotoff, Eigenvector priority function causes strong rank reversal in group decision making. Fundam. Inf. 144 (2016) 255–261. [Google Scholar]
  • D.G. Petróczy, An alternative quality of life ranking on the basis of remittances. Soc.-Econ. Planning Sci. 78 (2021) 101042. [CrossRef] [Google Scholar]
  • D.G. Petróczy and L. Csató, Revenue allocation in Formula One: a pairwise comparison approach. Int. J. General Syst. 50 (2021) 243–261. [CrossRef] [MathSciNet] [Google Scholar]
  • J. Ramík, Pairwise comparison matrix with fuzzy elements on alo-groups. Inf. Sci. 297 (2015) 236–253. [CrossRef] [Google Scholar]
  • T.L. Saaty, A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15 (1977) 234–281. [CrossRef] [Google Scholar]
  • T.L. Saaty, The Analytic Hierarchy Process. McGraw-Hill, New York (1980). [Google Scholar]
  • T.L. Saaty, Decision making – the analytic hierarchy and network processes (AHP/ANP). J. Syst. Sci. Syst. Eng. 13 (2004) 1–35. [CrossRef] [Google Scholar]
  • O.S. Vaidya and S. Kumar, Analytic hierarchy process: an overview of applications. Eur. J. Oper. Res. 169 (2006) 1–29. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.