Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 1, January-February 2022
Page(s) 293 - 330
DOI https://doi.org/10.1051/ro/2021185
Published online 07 February 2022
  • N. Amjady and A. Shirzadi, Unit commitment using a new integer coded genetic algorithm. Eur. Trans. Electr. Power 19 (2009) 1161–1176. [CrossRef] [Google Scholar]
  • J.S. Angelo and H.J.C. Barbosa, A study on the use of heuristics to solve a bilevel programming problem. Int. Trans. Oper. Res. 22 (2015) 861–882. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Aouadni, I. Aouadni and A. Reba, A systematic review on supplier selection and order allocation problems. J. Ind. Eng. Int. 15 (2019) 267–289. [CrossRef] [Google Scholar]
  • A.H. Azadnia, M.Z.M. Saman and K.Y. Wong, Sustainable supplier selection and order lot-sizing: an integrated multi-objective decision-making process. Int. J. Prod. Res. 53 (2015) 383–408. [CrossRef] [Google Scholar]
  • G. Barbarosoglu and D. Özgür, Hierarchical design of an integrated production and 2-echelon distribution system. Eur. J. Oper. Res. 118 (1999) 464–484. [CrossRef] [Google Scholar]
  • J.F. Bard, Practical Bilevel Optimization: Algorithms and Applications Nonconvex Optimization and its Applications. Springer, USA (1998). [Google Scholar]
  • S. Baskar, P. Subbaraj and M.V.C. Rao, Hybrid real coded genetic algorithm solution to economic dispatch problem. Comput. Electr. Eng. 29 (2003) 407–419. [CrossRef] [Google Scholar]
  • A. Blanco, M. Delgado and M.C. Pegalajar, A real-coded genetic algorithm for training recurrent neural networks. neural networks 14 (2001) 93–105. [CrossRef] [PubMed] [Google Scholar]
  • L. Brotcorne, M. Labbe, P. Marcotte and G. Savard, A bilevel model for toll optimization on a multicommodity transportation network. Transp. Sci. 35 (2001) 345–358. [CrossRef] [Google Scholar]
  • F.P. Buffa and W.M. Jackson, A goal programming model for purchase planning. J. Purchasing Mater. Manage. 19 (1983) 27–34. [Google Scholar]
  • H.I. Calvete, C. Galé and P.M. Mateo, A new approach for solving linear bilevel problems using genetic algorithms. Eur. J. Oper. Res. 188 (2008) 14–28. [CrossRef] [Google Scholar]
  • H.I. Calvete, C. Galé and M.J. Oliveros, Bilevel model for production-distribution planning solved by using ant colony optimization. Comput. Oper. Res. 38 (2011) 320–327. [CrossRef] [Google Scholar]
  • J.F. Camacho-Vallejo, R. Muñoz-Sánchez and J.L. González-Velarde, A heuristic algorithm for a supply chain’s production-distribution planning. Comput. Oper. Res. 61 (2015) 110–121. [CrossRef] [MathSciNet] [Google Scholar]
  • L.H. Chen and F. Sen Kang, Integrated inventory models considering the two-level trade credit policy and a price-negotiation scheme. Eur. J. Oper. Res. 205 (2010) 47–58. [CrossRef] [Google Scholar]
  • B. Colson, P. Marcotte and G. Savard, A trust-region method for nonlinear bilevel programming: algorithm and computational experience. Comput. Optim. App. 30 (2005) 211–227. [CrossRef] [Google Scholar]
  • B. Colson, P. Marcotte and G. Savard, An overview of bilevel optimization. Ann. Oper. Res. 153 (2007) 235–256. [CrossRef] [MathSciNet] [Google Scholar]
  • Competition Commission of India, Provisions relating to cartels, Competition Act, 2002. Competition Commission of India (2002). [Google Scholar]
  • B. Crevier, J.F. Cordeau and G. Savard, Integrated operations planning and revenue management for rail freight transportation. Transp. Res. Part B Methodol. 46 (2012) 100–119. [CrossRef] [Google Scholar]
  • I.G. Damousis, A.G. Bakirtzis and P.S. Dokopoulos, Network-constrained economic dispatch using real-coded genetic algorithm. IEEE Trans. Power Syst. 18 (2003) 198–205. [CrossRef] [Google Scholar]
  • L. Davis, Adapting operator probabilities in genetic algorithms. In: Proceedings of the Third International Conference on Genetic Algorithms. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1989) 61–69. [Google Scholar]
  • L. Davis, Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York (1991). [Google Scholar]
  • K. Deep and M. Thakur, A new crossover operator for real coded genetic algorithms. Appl. Math. Comput. 188 (2007) 895–912. [MathSciNet] [Google Scholar]
  • K. Deep and M. Thakur, A new mutation operator for real coded genetic algorithms. Appl. Math. Comput. 193 (2007) 211–230. [MathSciNet] [Google Scholar]
  • K. Deep, K.P. Singh, M.L. Kansal and C. Mohan, A real coded genetic algorithm for solving integer and mixed integer optimization problems. Appl. Math. Comput. 212 (2009) 505–518. [MathSciNet] [Google Scholar]
  • E.A. Demirtas and Ö. Üstün, An integrated multiobjective decision making process for supplier selection and order allocation. Omega 36 (2008) 76–90. [CrossRef] [Google Scholar]
  • S. Dempe, Foundations of Bilevel Programming, 1st edition. Springer, US (2002). [Google Scholar]
  • S. Dempe and A.B. Zemkoho, Bilevel road pricing: theoretical analysis and optimality conditions. Ann. Oper. Res. 196 (2012) 223–240. [CrossRef] [MathSciNet] [Google Scholar]
  • S. Deng, R. Aydin, C.K. Kwong and Y. Huang, Integrated product line design and supplier selection: a multi-objective optimization paradigm. Comput. Ind. Eng. 70 (2014) 150–158. [CrossRef] [Google Scholar]
  • S. Dewez, M. Labbe, P. Marcotte and G. Savard, New formulations and valid inequalities for a bilevel pricing problem. Oper. Res. Lett. 36 (2008) 141–149. [CrossRef] [MathSciNet] [Google Scholar]
  • G.W. Dickson, An analysis of vendor selection systems and decisions. J. Purchasing 2 (1966) 5–17. [Google Scholar]
  • H. Ding, L. Benyoucef and X. Xie, A simulation-optimization approach using genetic search for supplier selection. In: Proceedings of the 2003 International Conference on Machine Learning and Cybernetics (IEEE Cat No03EX693) (2003) 1260–1267. [Google Scholar]
  • A. Dolgui and J.-M. Proth, Pricing strategies and models. Ann. Rev. Control 34 (2010) 101–110. [CrossRef] [Google Scholar]
  • J.P. Dussault, P. Marcotte, S. Roch and G. Savard, A smoothing heuristic for a bilevel pricing problem. Eur. J. Oper. Res. 174 (2006) 1396–1413. [CrossRef] [Google Scholar]
  • L.J. Eshelman and J.D. Schaffer, Real-coded genetic algorithms and interval-schemata. Found. Genet. Algorithms 2 (1993) 187–202. [Google Scholar]
  • B. Fahimnia, L. Luong and R. Marian, Genetic algorithm optimisation of an integrated aggregate production-distribution plan in supply chains. Int. J. Prod. Res. 50 (2012) 81–96. [CrossRef] [Google Scholar]
  • B. Fahimnia, R.Z. Farahani, R. Marian and L. Luong, A review and critique on integrated production-distribution planning models and techniques. J. Manuf. Syst. 32 (2013) 1–19. [CrossRef] [Google Scholar]
  • X. Fu, X.J. Zeng, X. Luo, D. Wang, D. Xu and Q.L. Fan, Designing an intelligent decision support system for effective negotiation pricing: a systematic and learning approach. Decis. Support Syst. 96 (2017) 49–66. [CrossRef] [Google Scholar]
  • A.A. Gaballa, Minimum cost allocation of tenders. J. Oper. Res. Soc. 25 (1974) 389–398. [CrossRef] [Google Scholar]
  • Y. Gao, G. Zhang, J. Lu and H.M. Wee, Particle swarm optimization for bi-level pricing problems in supply chains. J. Global Optim. 51 (2011) 245–254. [CrossRef] [MathSciNet] [Google Scholar]
  • C.J. Gelderman, J. Semeijn and M. Verhappen, Buyer opportunism in strategic supplier relationships: triggers, manifestations and consequences. J. Purchasing Supply Manage. 26 (2020) 100581. [CrossRef] [Google Scholar]
  • M. Gen and A. Syarif, Hybrid genetic algorithm for multi-time period production/distribution planning. Comput. Ind. Eng. 48 (2005) 799–809. [CrossRef] [Google Scholar]
  • B.C. Giri and T. Maiti, Supply chain model with price- and trade credit-sensitive demand under two-level permissible delay in payments. Int. J. Syst. Sci. 44 (2013) 937–948. [Google Scholar]
  • D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1st edition. Addison-Wesley Longman Publishing Co., Inc., USA (1989). [Google Scholar]
  • D.E. Goldberg, Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst. 5 (1991) 139–167. [Google Scholar]
  • H. Haghighat and S.W. Kennedy, A bilevel approach to operational decision making of a distribution company in competitive environments. IEEE Trans. Power Syst. 27 (2012) 1797–1807. [CrossRef] [Google Scholar]
  • H. Haghighat, H. Seifi and A.R. Kian, Pay-as-bid versus marginal pricing: the role of suppliers strategic behavior. Int. J. Electr. Power Energy Syst. 42 (2012) 350–358. [CrossRef] [Google Scholar]
  • S.R. Hejazi, A. Memariani, G. Jahanshahloo and M.M. Sepehri, Linear bilevel programming solution by genetic algorithm. Comput. Oper. Res. 29 (2002) 1913–1925. [CrossRef] [MathSciNet] [Google Scholar]
  • F. Herrera, E. Herrera-viedma, M. Lozano and J.L. Verdegay, Fuzzy tools to improve genetic algorithms. In: Proc of the Second European Congress on Intelligent Techniques and Soft Computing (1994) 1532–1539. [Google Scholar]
  • F. Herrera, M. Lozano and J.L. Verdegay, Tuning fuzzy logic controllers by genetic algorithms. Int. J. Approximate Reasoning 12 (1995) 299–315. [CrossRef] [Google Scholar]
  • J.H. Holland, Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, MA, USA (1975). [Google Scholar]
  • A. Hori and M. Fukushima, Gauss-Seidel method for multi-leader-follower games. J. Optim. Theory App. 180 (2019) 651–670. [CrossRef] [Google Scholar]
  • V. Jayaraman, R. Srivastava and W.C. Benton, Supplier selection and order quantity allocation: a comprehensive model. J. Supply Chain Manage. 35 (1999) 50–58. [CrossRef] [Google Scholar]
  • A. Joseph, S.I. Gass and N.A. Bryson, Nearness and bound relationships between an integer-programming problem and its relaxed linear-programming problem. J. Optim. Theory App. 98 (1998) 55–63. [CrossRef] [Google Scholar]
  • A. Kumar, A. Gupta and A. Mehra, A bilevel programming model for operative decisions on special trains: an Indian Railways perspective. J. Rail Transp. Planning Manage. 8 (2018) 184–206. [CrossRef] [Google Scholar]
  • A. Kumar, A. Gupta and A. Mehra, A bilevel programming model for a cohesive decision-making on strategic pricing and production distribution planning for a small-scale supplier. Int. Game Theory Rev. 22 (2020) 2040009. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Labbé and A. Violin, Bilevel programming and price setting problems. Ann. Oper. Res. 240 (2016) 141–169. [CrossRef] [MathSciNet] [Google Scholar]
  • M. Labbe, P. Marcotte and G. Savard, A bilevel model of taxation and its application to optimal highway pricing. Manage. Sci. 44 (1998) 1608–1622. [CrossRef] [Google Scholar]
  • L. Lai, H.R. Bowles and L. Babcock, Social costs of setting high aspirations in competitive negotiation. Negotiation Conflict Manage. Res. 6 (2013) 1–12. [Google Scholar]
  • L.R. Lamberson, D. Diederich and J. Wuori, Quantitative vendor evaluation. J. Purchasing Mater. Manage. 12 (1976) 19–28. [Google Scholar]
  • S. Leyffer and T. Munson, Solving multi-leader-common-follower games. Optim. Methods Softw. 25 (2010) 601–623. [CrossRef] [MathSciNet] [Google Scholar]
  • H. Li and L. Fang, An evolutionary algorithm for solving bilevel programming problems using duality conditions. Math. Prob. Eng. 2012 (2012) 1–14. [Google Scholar]
  • H. Li and Y. Wang, A hybrid genetic algorithm for solving nonlinear bilevel programming problems based on the simplex method. In: Proceedings – Third International Conference on Natural Computation, ICNC 2007. Vol. 4 (2007) 91–95. [Google Scholar]
  • H. Li, L. Zhang and Y.C. Jiao, Solution for integer linear bilevel programming problems using orthogonal genetic algorithm. J. Syst. Eng. Electron. 25 (2014) 443–451. [CrossRef] [Google Scholar]
  • T.-F. Liang, Fuzzy multi-objective production/distribution planning decisions with multi-product and multi-time period in a supply chain. Comput. Ind. Eng. 55 (2008) 676–694. [CrossRef] [Google Scholar]
  • T.-F. Liang and H.-W. Cheng, Application of fuzzy sets to manufacturing/distribution planning decisions with multi-product and multi-time period in supply chains. Expert Syst. App. 36 (2009) 3367–3377. [CrossRef] [Google Scholar]
  • Z. Liao and J. Rittscher, A multi-objective supplier selection model under stochastic demand conditions. Int. J. Prod. Econ. 105 (2007) 150–159. [Google Scholar]
  • X. Liu and H. Liu, A logistics production-distribution scheme based on intelligent computing. Comput. Modell. New Technol. 18 (2014) 1332–1336. [Google Scholar]
  • Y. Liu, C. Su, Y. Li and T. Liu, Managing opportunism in a developing interfirm relationship: the interrelationship of calculative and loyalty commitment. Ind. Marketing Manage. 39 (2010) 844–852. [CrossRef] [Google Scholar]
  • J. Lu, J. Han, Y. Hu and G. Zhang, Multilevel decision-making: a survey. Inf. Sci. 346, 347 (2016) 463–487. [CrossRef] [Google Scholar]
  • C.B. Lucasius and G. Kateman. Application of genetic algorithms in chemometrics. In: Proceedings of the Third International Conference on Genetic Algorithms, edited by J.D. Schaffer. Morgan Kaufmann Publishers, San Mateo (1989) 170–176. [Google Scholar]
  • A.K. Maiti, A.K. Bhunia and M. Maiti, An application of real-coded genetic algorithm (RCGA) for mixed integer non-linear programming in two-storage multi-item inventory model with discount policy. Appl. Math. Comput. 183 (2006) 903–915. [MathSciNet] [Google Scholar]
  • R. Manzini, M. Gamberi and A. Regattieri, Applying mixed integer programming to the design of a distribution logistic network.Int. J. Ind. Eng. Theory App. Pract. 13 (2006) 207–218. [Google Scholar]
  • R. Mathieu, L. Pittard and G. Anandalingam, Genetic algorithm based approach to bi-level linear programming. RAIRO-Oper. Res. 28 (1994) 1–21. [CrossRef] [EDP Sciences] [Google Scholar]
  • A. Megahed and M. Goetschalckx, A modeling framework and local search solution methodology for a production-distribution problem with supplier selection and time-aggregated quantity discounts. Appl. Math. Modell. 68 (2019) 198–218. [CrossRef] [Google Scholar]
  • F. Meng, B. Kazemtabrizi, X.J. Zeng and C. Dent, An optimal differential pricing in smart grid based on customer segmentation. In: 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe, ISGT-Europe 2017 – Proceedings. 2018–January (2017) 1–6. DOI: 10.1109/ISGTEurope.2017.8260255. [Google Scholar]
  • S. Mirjalili, Genetic algorithm. Stud. Comput. Intell. 780 (2019) 43–55. [Google Scholar]
  • H. Mühlenbein and D. Schlierkamp-Voosen, Predictive models for the breeder genetic algorithm I. Continuous parameter optimization. Evol. Comput. 1 (1993) 25–49. [CrossRef] [Google Scholar]
  • T. Mysen, G. Svensson and J.M. Payan, The key role of opportunism in business relationships. Marketing Intell. Planning 29 (2011) 436–449. [CrossRef] [Google Scholar]
  • T.T. Nagle and G. Müller, The Strategy and Tactics of Pricing: A Guide to Growing More Profitably, 6th edition. Taylor & Francis, Routledge (2018). [Google Scholar]
  • R. Narasimhan, S. Talluri and D. Mendez, Supplier evaluation and rationalization via data envelopment analysis: an empirical examination. J. Supply Chain Manage. 37 (2001) 28–37. [CrossRef] [Google Scholar]
  • Y. Nemati and M.H. Alavidoost, A fuzzy bi-objective MILP approach to integrate sales, production, distribution and procurement planning in a FMCG supply chain. Soft Comput. 23 (2019) 4871–4890. [CrossRef] [Google Scholar]
  • A. Norouzi, A. Zolfaghari, A.H. Minuchehr and F. Khoshahval, An enhanced integer coded genetic algorithm to optimize PWRs. Prog. Nucl. Energy 53 (2011) 449–456. [CrossRef] [Google Scholar]
  • S.S. Padhi and P.K.J. Mohapatra, Detection of collusion in government procurement auctions. J. Purchasing Supply Manage. 17 (2011) 207–221. [CrossRef] [Google Scholar]
  • A.K. Paswan, T. Hirunyawipada and P. Iyer, Opportunism, governance structure and relational norms: an interactive perspective. J. Bus. Res. 77 (2017) 131–139. [CrossRef] [Google Scholar]
  • B. Raa, W. Dullaert and E.H. Aghezzaf, A matheuristic for aggregate production-distribution planning with mould sharing. Int. J. Prod. Econ. 145 (2013) 29–37. [CrossRef] [Google Scholar]
  • N.J. Radcliffe, Equivalence class analysis of genetic algorithms. Complex Syst. 5 (1991) 183–205. [Google Scholar]
  • R. Rajavel, S.K. Ravichandran and G.R. Kanagachidambaresan, Agent-based cloud service negotiation architecture using similarity grouping approach. Int. J. Wavelets, Multiresolution Inf. Process. 18 (2020) 1941015. [CrossRef] [MathSciNet] [Google Scholar]
  • E. Roghanian, S.J. Sadjadi and M.B. Aryanezhad, A probabilistic bi-level linear multi-objective programming problem to supply chain planning. Appl. Math. Comput. 188 (2007) 786–800. [MathSciNet] [Google Scholar]
  • C. Ruiz, A.J. Conejo and Y. Smeers, Equilibria in an oligopolistic electricity pool with stepwise offer curves. IEEE Trans. Power Syst. 27 (2012) 752–761. [CrossRef] [Google Scholar]
  • J. Scott, W. Ho, P.K. Dey and S. Talluri, A decision support system for supplier selection and order allocation in stochastic, multi-stakeholder and multi-criteria environments. Int. J. Prod. Econ. 166 (2015) 226–237. [CrossRef] [Google Scholar]
  • A. Sinha, P. Malo and K. Deb, A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22 (2018) 276–295. [CrossRef] [Google Scholar]
  • R.E. Spekman, Strategic supplier selection: understanding long-term buyer relationships. Bus. Horizons 31 (1988) 75–81. [CrossRef] [Google Scholar]
  • C. Steinle, H. Schiele and T. Bohnenkamp, Does supplier opportunism lead to buyer opportunism? A social capital perspective. J. Bus. Ind. Marketing 35 (2019) 362–384. [CrossRef] [Google Scholar]
  • P. Subbaraj and P.N. Rajnarayanan, Optimal reactive power dispatch using self-adaptive real coded genetic algorithm. Electr. Power Syst. Res. 79 (2009) 374–381. [CrossRef] [Google Scholar]
  • L. Sun, Y. Zhang and C. Jiang, A matrix real-coded genetic algorithm to the unit commitment problem. Electr. Power Syst. Res. 76 (2006) 716–728. [CrossRef] [Google Scholar]
  • S. Talluri and R. Narasimhan, A methodology for strategic sourcing. Eur. J. Oper. Res. 154 (2004) 236–250. [CrossRef] [Google Scholar]
  • B. Teixeira, T. Pinto, F. Silva, G. Santos, I. Praça and Z. Vale, Multi-agent decision support tool to enable interoperability among heterogeneous energy systems. Appl. Sci. (Switzerland) 8 (2018) 328. [Google Scholar]
  • A. Thangam, Optimal price discounting and lot-sizing policies for perishable items in a supply chain under advance payment scheme and two-echelon trade credits. Int. J. Prod. Econ. 139 (2012) 459–472. [Google Scholar]
  • D.J. Thomas and P.M. Griffin, Coordinated supply chain management. Eur. J. Oper. Res. 94 (1996) 1–15. [CrossRef] [Google Scholar]
  • G.A. Vignaux and Z. Michalewicz, A genetic algorithm for the linear transportation problem. IEEE Trans. Syst. Man Cybern. 21 (1991) 445–452. [CrossRef] [Google Scholar]
  • Y. Wang, Y.C. Jiao and H. Li, An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint-handeling scheme. IEEE Trans. Syst. Man Cybern. Part C: App. Rev. 35 (2005) 221–232. [CrossRef] [MathSciNet] [Google Scholar]
  • C.A. Weber, J.R. Current and W.C. Benton, Vendor selection criteria and methods. Eur. J. Oper. Res. 50 (1991) 2–18. [CrossRef] [Google Scholar]
  • H.M. Wee, M.C. Lee, P.C. Yang and R.L. Chung, Bi-level vendor–buyer strategies for a time-varying product price. Appl. Math. Comput. 219 (2013) 9670–9680. [MathSciNet] [Google Scholar]
  • A.H. Wright, Genetic algorithms for real parameter optimization. In: Foundations of Genetic Algorithms (1991) 205–218. [Google Scholar]
  • H. Yang, X. Zhang and Q. Meng, Modeling private highways in networks with entry-exit based toll charges. Transp. Res. Part B Methodol. 38 (2004) 191–213. [CrossRef] [Google Scholar]
  • P.C. Yang, H.M. Wee, S. Pai and Y.F. Tseng, Solving a stochastic demand multi-product supplier selection model with service level and budget constraints using genetic algorithm. Expert Syst. App. 38 (2011) 14773–14777. [CrossRef] [Google Scholar]
  • Y. Yin, Genetic-algorithms-based approach for bilevel programming models. J. Transp. Eng. 126 (2000) 115–119. [CrossRef] [Google Scholar]
  • X. Zhu, Q. Yu and X. Wang, A hybrid differential evolution algorithm for solving nonlinear bilevel programming with linear constraints. In: Proceedings of the 5th IEEE International Conference on Cognitive Informatics, ICCI 2006. Vol. 1 (2006) 126–131. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.