Open Access
Issue
RAIRO-Oper. Res.
Volume 56, Number 1, January-February 2022
Page(s) 1 - 22
DOI https://doi.org/10.1051/ro/2021183
Published online 07 February 2022
  • L. Bai and H. Zhang, Dynamic mean-variance problem with constrained risk control for the insurers. Math. Methods. Oper. Res. 68 (2008) 181–205 [CrossRef] [MathSciNet] [Google Scholar]
  • L. Bai, J. Cai and M. Zhou, Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting. Insur. Math. Econ. 53 (2013) 664–670 [CrossRef] [Google Scholar]
  • N. Bäuerle, Benchmark and mean-variance problems for insurers. Math. Methods. Oper. Res. 62 (2005) 159–165 [CrossRef] [MathSciNet] [Google Scholar]
  • J. Bi and J. Cai, Optimal investment-reinsurance strategies with state dependent risk aversion and VaR constraints in correlated markets. Insur. Math. Econ. 85 (2019) 1–14 [CrossRef] [Google Scholar]
  • J. Bi, Z. Liang and F. Xu, Optimal mean-variance investment and reinsurance problems for the risk model with common shock dependence. Insur. Math. Econ. 70 (2016) 245–258 [CrossRef] [Google Scholar]
  • T. Björk and A. Murgoci, A general theory of Markovian time inconsistent stochastic control problems. Working Paper (2010) [Google Scholar]
  • T. Björk and A. Murgoci, A theory of Markovian time-inconsistent stochastic control in discrete time. Finan. Stoch. 18 (2014) 545–592 [CrossRef] [Google Scholar]
  • T. Björk, A. Murgoci and X. Zhou, Mean-variance portfolio optimization with state-dependent risk aversion. Math. Finan. 24 (2014) 1–24 [CrossRef] [Google Scholar]
  • T. Björk, M. Khapko and A. Murgoci, On time-inconsistent stochastic control in continuous time. Finan. Stoch. 21 (2017) 331–360 [CrossRef] [Google Scholar]
  • S. Browne, Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin. Math. Oper. Res. 20 (1995) 937–957 [CrossRef] [MathSciNet] [Google Scholar]
  • J. Grandell, Aspects of Risk Theory. New York: Springer-Verlag (1991) [CrossRef] [Google Scholar]
  • A. Gu, F.G. Viens and B. Yi, Optimal reinsurance and investment strategies for insurers with mispricing and model ambiguity. Insur. Math. Econ. 72 (2017) 235–249 [CrossRef] [Google Scholar]
  • C. Hipp and M. Taksar, Optimal non-proportional reinsurance control. Insur. Math. Econ. 47 (2010) 246–254 [CrossRef] [Google Scholar]
  • M. Kaluszka, Optimal reinsurance under mean-variance premium principles. Insur. Math. Econ. 28 (2001) 61–67 [CrossRef] [Google Scholar]
  • Y. Li and Z. Li, Optimal time-consistent investment and reinsurance strategies for mean-variance insurers with state dependent risk aversion. Insur. Math. Econ. 53 (2013) 86–97 [CrossRef] [Google Scholar]
  • D. Li, D. Li and V.R. Young, Optimality of excess-loss reinsurance under a mean-variance criterion. Insur. Math. Econ. 75 (2017) 82–89 [CrossRef] [Google Scholar]
  • Z. Liang and K.C. Yuen, Optimal dynamic reinsurance with dependent risks: variance premium principle. Scand. Actuar. J. 2016 (2016) 18–36 [CrossRef] [Google Scholar]
  • Z. Liang, K.C. Yuen and C. Zhang, Optimal reinsurance and investment in a jump-diffusion financial market with common shock dependence. J. Appl. Math. Comput. 56 (2018) 637–664 [CrossRef] [MathSciNet] [Google Scholar]
  • J. Liu and Z. Chen, Time consistent multi-period robust risk measures and portfolio selection models with regime-switching. Eur. J. Oper. Res. 268 (2018) 373–385 [CrossRef] [Google Scholar]
  • B. Liu, H. Meng and M. Zhou, Optimal investment and reinsurance policies for an insurer with ambiguity aversion. N. Am. J. Econ. Finan. 55 (2021) [Google Scholar]
  • X. Peng, F. Chen and W. Wang, Robust optimal investment and reinsurance for an insurer with inside information. Insur. Math. Econ. 96 (2021) 15–30 [CrossRef] [Google Scholar]
  • D. Promislow and V.R. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift. N. Am. Actuar. J. 9 (2005) 110–128 [CrossRef] [Google Scholar]
  • H. Schmidli, On minimizing the ruin probability by investment and reinsurance. Ann. Appl. Probab. 12 (2002) 890–907 [Google Scholar]
  • J. Wei and T. Wang, Time-consistent mean-variance asset-liability management with random coefficients. Insur. Math. Econ. 77 (2017) 84–96 [CrossRef] [Google Scholar]
  • H. Wu and Y. Zeng, Equilibrium investment strategy for defined-contribution pension schemes with generalized mean-variance criterion and mortality risk. Insur. Math. Econ. 64 (2015) 396–408 [CrossRef] [Google Scholar]
  • L. Xu, L. Zhang and D. Yao, Optimal investment and reinsurance for an insurer under Markov-modulated financial market. Insur. Math. Econ. 74 (2017) 7–19 [CrossRef] [Google Scholar]
  • P. Yang, Z. Chen and X. Cui, Equilibrium reinsurance strategies for n insurers under a unified competition and cooperation framework. Scand. Actuar. J. 2021 (2021) 969–997 [CrossRef] [Google Scholar]
  • K.C. Yuen, J. Guo and X. Wu, On a correlated aggregate claim model with Poisson and Erlang risk process. Insur. Math. Econ. 31 (2002) 205–214 [CrossRef] [Google Scholar]
  • K.C. Yuen, J. Guo and X. Wu, On the first time of ruin in the bivariate compound Poisson model. Insur. Math. Econ. 38 (2006) 298–308 [CrossRef] [Google Scholar]
  • K.C. Yuen, Z. Liang and M. Zhou, Optimal proportional reinsurance with common shock dependence. Insur. Math. Econ. 64 (2015) 1–13 [CrossRef] [Google Scholar]
  • Y. Zeng and Z. Li, Optimal time-consistent investment and reinsurance policies for mean-variance insurers. Insur. Math. Econ. 49 (2011) 145–154 [CrossRef] [Google Scholar]
  • X. Zeng and S. Luo, Stochastic pareto-optimal reinsurance policies. Insur. Math. Econ. 53 (2013) 671–677 [CrossRef] [Google Scholar]
  • X. Zhang, H. Meng and Y. Zeng, Optimal investment and reinsurance strategies for insurers with generalized mean-variance premium principle and no-short selling. Insur. Math. Econ. 67 (2016) 125–132 [CrossRef] [Google Scholar]
  • C. Zhang and Z. Liang, Portfolio optimization for jump-diffusion risky assets with common shock dependence and state dependent risk aversion. Optim. Contr. Appl. Met. 38 (2017) 229–246 [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.